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Este trabajo fin de máster es un estudio sobre las arquitecturas cognitivas actuales y la 

necesidad de dotarlas con mecanismos de autorreflexión y consciencia.  

Los modernos sistemas de control han crecido enormemente en complejidad, 

siendo masivamente paralelos y distribuidos. Los requisitos de mayores niveles de 

autonomía se unen a los de robustez, tolerancia a fallos, seguridad, integrabilidad, 
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Las arquitecturas cognitivas son una posible tecnología a emplear en la 

construcción de sistemas de control inteligente que cumplan con las necesidades 

comentadas. En este trabajo se plantean unos principios de diseño de inspiración 

biológica para el desarrollo de sistemas de control cognitivos y se ha desarrollado un 

marco teórico, basado en la Teoría General de Sistemas, para el estudio de sistemas 
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establecido un criterio de evaluación de arquitecturas cognitivas y con él se han 
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Caṕıtulo 1

Introducción. Motivación y
objetivos

Este trabajo fin de master presenta un estudio de la aplicabilidad de las
arquitecturas cognitivas al desarrollo de sistemas de control inteligente inte-
grados con altos requisitos de robustez, tiempo-real, operación distribúıda e
integrabilidad, y la necesidad de dotarlas de mecanismos de autoreflexión y
consciencia para que puedan resolver los requisitos planteados.

1.1 Motivación

En la actualidad el desarrollo de sistemas de control presenta retos que re-
quieren nuevas soluciones tecnológicas. El incremento de la complejidad de
dichos sistemas, que soportan infraestructuras tecnológicas tan cŕıticas como
redes de distribución eléctica, industria de procesos, o sistemas con altos req-
uisitos de seguridad, como en la automoción o la aviación, unido la creciente
necesidad de integración, hacen necesarias nuevas técnicas de diseño que
permitan garantizar el cumplimiento estricto de las especificaciones. Dado el
volumen de código software y su complejidad resulta inviable la supervisión
completa por operadores humanos del sistema final, además de resultar ine-
ficiente en términos económicos y de prestaciones del sistema. Es necesario,
por tanto, que sea la propia arquitectura la que provea los mecanismos para
asegurar el cumplimiento de los requisitos.

Necesidad de nuevas soluciones para la tecnológia de control

Desde el control en lazo cerrado hasta las modernas técnicas de control in-
teligente, pasando por las técnicas de control predictivo y control adaptativo,
se ha ido dotando a los sistemas de control de mayores capacidades: mejora
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4 CAPÍTULO 1. INTRODUCCIÓN. MOTIVACIÓN Y OBJETIVOS

de los tiempos de respuesta, aumento de su robustez ante perturbaciones,
optimización, mayor autonomı́a, etc. No obstante, esto ha incrementado la
complejidad de los sitemas de control aumentando el problema de afrontar
cuestiones de integrabilidad, distribución , robustez y fiabilidad. Surge la
necesidad de introducir mecanismos de control sobre los propios sistemas de
controlar, lo que lleva paradójicamente a seguir aumentando el sistema de
control y su complejidad. Se necesita que sea el propio sistema el que se
encargue de su propio control, integración y mantenimiento. Son éstas cues-
tiones que en los estudios de las últimas décadas en la bioloǵıa, la psicoloǵıa
y a neurociencia, se han relacionado con la cuestión de la consciencia y la
autoconsciencia. Por ello el interés en este tema trasciende el púramente
filosófico y cient́ıfico al interés práctico de construir sistemas de control ca-
paces de resolver los problemas que presenta la tecnoloǵıa actual.

1.2 Objetivos

Los objetivos principales de este trabajo fin de máster son:

• Extraer los requisitos de ingenieŕıa para la aplicación de una arquitec-
tura cognitiva como sistema de control inteligente.

• Desarrollar un marco de evaluación para arquitecturas cognitivas.

• Evaluar las arquitecturas cognitivas de referencia existentes e identi-
ficar los elementos de los que carecen para satisfacer los requisitos de
ingenieŕıa.

• Analizar el papel que los mecanismos de autoconsciencia pueden jugar
en el desarrollo de sistemas complejos de control.



Caṕıtulo 2

Requisitos de ingenieŕıa

En este caṕıtulo se han recopilado sistemáticamente los requisitos a los que
tendŕıa que dar solución una posible arquitectura cognitiva que se emplease
para el desarrollo de sistemas de control. De dichos requisitos se han derivado
propiedades ya de carácter cognitivo y de inteligencia artificial que habŕıa de
poseer dicha arquitectura. Como introducción se presentan algunas ideas
fundamentales acerca de la autonomı́a y de las arquitecturas cognitivas.

2.1 Sistemas Autónomos

Una de las demandas fundamentales en la tecnoloǵıa actual es el de la au-
tonomı́a. Se quiere que los sistemas sean capaces de realizar una mayor
variedad de tareas, pudiendo afrontar un más amplio abanico de imprevisto
y todo ello de la manera más autónoma posible: con la menor intervención
humana necesaria. Se presentan a continuación algunas ideas fundamentales
a ese respecto.

Autonomı́a

La definición de autonomı́a es complicada por lo abstracto del término.
Muchas son las que se han propuesto, fruto de las distintas interpretaciones
del término. Para los ingenieros de producción la autonomı́a máxima deseada
supone dejar que la planta opere sola. Para los ingenieros de automatización
se convierte en: construir la planta para que opere sola. Los motivos son
tanto económicos (reducción del coste de personal, aumento del tiempo en
funcionamiento) como técnicos (se pueden optimizar las condiciones de pro-
ducción).

5
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Autonomı́a, en sentido etimológico quiere decir “que tiene sus propias
leyes”, lo que en ingenieŕıa podŕıa traducirse en la capacidad del sistema
para fijarse sus propios objetivos. Sin embargo, en la ingenieŕıa lo que se
quiere no es que el sistema pueda imponerse sus propios objetivos finales,
sino que, persiguiendo los objetivos que le son impuestos (por el usuario o el
diseñador) sea capaz de alcanzarlos autónomamente, fijándose él los objetivos
intermedios. Se precisa, por tanto, autonomı́a limitada. Desde un punto de
vista práctico, además, no se pretende construir el sistema autónomo ideal
capaz de realizar cualquier tarea de manera independiente. Lo que se precisa
es autonomı́a a medida: que el sistema sea capaz de realizar ciertas tareas,
en unos entornos determinados, con la menor intervención externa posible.

Incertidumbre e inteligencia

El problema fundamental al que se enfrenta el diseñador de sistemas autónomos
y el ingeniero de control en general es la incertidumbre, las perturbaciones.
Nosotros la clasificaremos en dos tipos fundamentales:

Incertidumbre cuantitativa se refiere al posible cambio desconocido en
el valor de una o varias variables que afectan al sistema.

Incertidumbre cualitativa se refiere al cambio cualitativo de la situación
en el entorno o en el propio sistema, por ejemplo por la aparición de
nuevas variables.

Las estrategias de control clásico han sido capaces de resolver en mayor
o menos medida el problema de la incertidumbre cuantitativa. El problema
surge cuando se quiere conseguir que los sistemas sean capaces de afrontar
situaciones inesperadas y de las que no tienen un modelo matemático o de
otro formato del que extraer directamente la acción apropiada a tomar. Una
v́ıa de atacar el problema es dotando al sistema de la capacidad de explotar
al máximo todo el conocimiento a su disposición para afrontar lo inesperado.
Las capacidades de inteligencia, cognitivas, parecen la única v́ıa razonable
y eficaz para contruir sistemas autónomos capaces de hacer frente a incer-
tidumbres de tipo cualitativo.

2.2 Arquitecturas cognitivas

Una arquitectura cognitiva es el esquema o patrón para estructurar los el-
ementos funcionales que configuran a un agente inteligente en inteligencia
artificial. Se pueden distinguir tres tipos de arquitecturas cognitivas según
supropósito:
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• Arquitecturas que intentan modelar la inteligencia humana, el fun-
cionamiento de nuestra mente. De este tipo son ACT-R o ATLANTIS.

• Arquitecturas que intentan modelar la inteligencia general, como Soar
o BB1.

• Arquitecturas para construir sistemas de control inteligente, como RCS.

Es este tercer caso el que nos interesa desde el punto de vista de este
trabajo fin de máster.

Las arquitecturas cognitivas pueden clasificarse también de acuerdo con el
paradigma de las ciencias cognitivas y la IA al que responden: connectivista
las arquitecturas reactivas, o computacional las arquitecturas deliberativas,
quedando entre ambos extremos las arquitecturas h́ıbridas.

2.3 Requisitos de ingenieŕıa para una arqui-
tectura cognitiva

En esta sección se analizan y explicitan todos los requisitos no funcionales
que se demandaŕıan a una arquitectura de control inteligente de aplicación
multidominio con la que construir sistemas complejos de control integrado:

• Dependability1 y todos los requisitos que engloba:

– Reliability.

– Robustez, tolerancia a fallos.

– Seguridad

– Disponibilidad.

– Mantenibilidad.

– Escalabilidad.

• Operación en tiempo real: predecibilidad, garantizar tiempos de re-
spuesta.

1Se ha mantenido en algunos casos la terminoloǵıa anglosajona por no existir una tra-
ducción exacta de los términos, que en inglés implican un significado y unas connotaciones
concretas
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Generalidad y versatilidad

Se busca una arquitectura de dominio general (sirva para diseñar el sistema
de control de un autóvil o de una columna de destilación petroqúımica), y que
permita diseñar todo el sistema de control, desde el control a nivel estratégico,
con altos niveles de abstracción e inteligencia artificial y menores requisitos
en tiempos de respuesta, hasta los lazos de control a bajo nivel, con rápidos
tiempos de respuesta y baja carga de cómputo.

Propiedades Cognitivas

Como consecuencia de los requisitos, expuestos anteriormente, que se solici-
tan de los sistemas actualmente, y que por tanto también se refieren a los sub-
sistemas de control, podemos extraer los siguientes requisitos o propiedades
cognitivas para una arquitectura que permitiese la construcción de sistemas
de cotrol inteligente complejos:

• Perceptuales: generalización, categorización.

• Planificación.

• Predicción.

• Comportamiento reactivo.

• Concurrencia.

• Soporte para conocimiento tanto impĺıcito como expĺıcito.

• Conocimiento procedural y declarativo.

• Metaconocimiento.

• Aprendizaje.

y la siguientes, directamente vinculadas con la capacidad de autocon-
sciencia, que se desarrollará en el tema 15

• Auto-monitorización.

• Auto-reconfiguración.

• Auto-reparación.

• Auto-mantenimiento.

• Auto-reflexión.



Caṕıtulo 3

Marco Teórico

Para analizar sistemas tan diversos y heterogéneos como las arquitecturas
cognitivas ha sido necesario buscar un marco teórico lo suficientemente gen-
eral. Se ha escogido la teoŕıa general de sistemas como punto de partida, a
partir de la cuel se ha elaborado el marco conceptual del Sistema Cognitivo
General, como formulación para evaluar las arquitecturas cognitivas.

3.1 Teoŕıa general de Sistemas

La noción de sistema es común en las disciplinas cient́ıficas, como un concepto
clave para modelizar diferentes tipos de fenómeno, referidos a conjuntos de
materia, dispositivos, componentes o, en general, entidades. Sin embargo, la
noción de sistema también se utiliza en otros dominios como la socioloǵıa o
la economı́a. La Teoŕıa General de Sistemas (General System Theory, GST),
más propiamente llamada también Teoŕıa de los Sistemas Generales, surgió
bajo la idea de que existe una noción de sistema común a todas las disci-
plinas, que se conocerá como sistema general. Esta noción podŕıa expresarse
prescindiendo de los aspectos propios de cada disciplina, y extrayendo los
comunes. Este texto se basa en una obra concreta: An Approach to General
Systems Theory, escrito por George J. Klir [37].

Conceptos fundamentales

Pensemos en lo que entendemos por sistema, considerándolo en relaci ón a
lo que le rodea. Si todas las posibles entidades que existen forman el uni-
verso, podemos decir que un sistema es una parte de él, que se considera
aisladamente del resto para su investigación. Todo aquello del universo que
no forma parte del sistema, se llamará entorno. En general, las disciplinas de

9
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la ciencia comparten esta noción, aunque con matices diferenciadores, usual-
mente referidos a los criterios para la separación entre sistema y entorno. El
observador distingue el sistema estudiado del entorno evaluando un conjunto
de aspectos que entiende como rasgos caracteŕısticos del sistema, o atributos.
Estarán caracterizados por los valores de una serie de cantidades. Algunas
de estas cantidades serán medibles y se les llamará cantidades f́ısicas, como
la masa, longitud, densidad, etc. No siempre las cantidades serán medibles,
en cuyo caso serán cantidades abstractas. Los valores de las cantidades, por
tanto, es lo que realmente se observa en el entorno, y lo que el investigador
utiliza para evaluar los atributos del sistema. Los instantes de tiempo y los
lugares del espacio donde se observa las cantidades constituyen la resolución
espacio-tiempo. En la investigación de un sistema, por tanto, se efectuará
repetidas observaciones de las cantidades, en determinados puntos del espa-
cio, que tras el peŕıodo de observación tendrán como resultado un conjunto
de valores, al cual se llamará actividad del sistema.

Sin embargo, si se trata de explicar el comportamiento de un sistema,
disponer de un registro de su actividad en muchas ocasiones no resulta sufi-
ciente, ya que existen aspectos que pueden no estar recogidos en ella. Dicho
de otro modo, pueden existir cantidades que no han sido observadas, pero
que intervienen en el comportamiento del sistema. A estas cantidades se les
llama cantidades internas, mientras que a las cantidades observadas se les
llama cantidades externas. Para referirnos al conjunto de valores de las can-
tidades del sistema en un instante determinado decimos estado del sistema.
Podŕıamos distinguir entre estado interno y estado externo en función de
las cantidades. La función principal del investigador es explicar la actividad
del sistema. Para ello el investigador analizará ésta tratando de reconocer
patrones entre los valores de las cantidades. Generalmente, estos patrones
se expresan en forma de relaci ón entre las cantidades, o de función, en el
caso de admitir una formulación matemática. A estas relaciones entre can-
tidades les llamaremos relaciones de comportamiento. El conjunto de todas
ellas será formalmente el comportamiento del sistema. Podemos observar
que el comportamiento del sistema, o dicho de otro modo, el hecho de que
presente unas relaciones u otras, es debido a sus propiedades. Llamaremos
organización del sistema al conjunto de todas sus propiedades.

Definiendo sistemas

El estudio de un sistema como un todo puede resultar una tarea extremada-
mente dif́ıcil, debido a la propia complejidad del sistema o a otros factores
como la no-observabilidad de alguna de sus partes. Generalmente, para es-
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tudiar sistemas complejos, el conjunto total de cantidades se divide en sub-
conjuntos, y a cada uno se le considera como si fuese un sistema en śı mismo.
A cada uno de estos subconjuntos se le llama genéricamente subsistema,
para expresar que en realidad se concibe como parte de un sistema superior.
También se puede considerar que los subsistemas son partes constituyentes
del sistema (son, en el fondo, subconjuntos de sus cantidades) en cuyo caso
se les llama elementos. Al conjunto formado por todos los elementos se le
llama universo del discurso del sistema. En general, los elementos de un sis-
tema no constituyen elementos independientes y disjuntos, sino que tienen
partes comunes. Es decir, que entre dos elementos puede existir un grupo
de cantidades compartidas por ambos, que se llamará acoplamiento entre
los elementos. Se entiende que puede haber acoplamientos entre más de dos
elementos. Los elementos de un sistema, por tanto, están relacionados entre
śı a través de sus acoplamientos, lo cual hace que la actividad de algunos
elementos dependa de las de otros. El conjunto de elementos y su jerarqúıa
de acoplamientos, por tanto, definen una estructura, que se conocerá como
estructura del universo del discurso y los acoplamientos, y se abreviará por
estructura-UC.

Pero el sistema no queda completamente definido por su estructura-UC,
a pesar de que ésta explique las partes que lo componen y cómo están rela-
cionadas entre śı. Es necesario conocer qué combinaciones de los valores de
sus cantidades son posibles, es decir, qué estados son posibles para el sistema.
Además, es necesario conocer a cuáles de ellos podŕıa evolucionar el sistema,
partiendo de uno dado, es decir, las transiciones posibles desde cada estado.
El conjunto de los estados posibles del sistema y sus transiciones asociadas se
conoce como estructura de estados-transiciones, y se abrevia por estructura-
ST. Se puede observar que la estructura-ST representa una estructura de
la dinámica del sistema, en cuanto que determina parcialmente cómo éste
puede evolucionar. Podemos observar que las estructuras UC y ST represen-
tan la organización del sistema, porque definen las posibilidades del sistema
de acuerdo a sus propiedades. Sin embargo, para conocer un sistema comple-
tamente es necesario completar el conocimiento de su organización conmás
aspectos que ya han sido mencionados: la resolución espacio-tiempo, una ac-
tividad y al menos, las expresiones fundamentales de su comportamiento. De
esta forma quedaŕıan determinados todos los aspectos de un sistema dado en
un periodo de tiempo concreto. Espećıficamente, la definición de un sistema
consta de cinco rasgos primarios:

• El conjunto de cantidades externas y la resolución espacio?tiempo.

• Una actividad dada.
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• Comportamiento permanente.

• Estructura-UC real.

• Estructura-ST real.

Analizando los cinco aspectos necesarios para definir un sistema, pode-
mos deducir que los dos primeros lo determinan en un sentido circunstancial,
es decir, en un lugar y periodo de tiempo concretos: en un contexto determi-
nado. Por otra parte, los últimos tres aspectos se refieren a las caracteŕısticas
intŕınsecas y constituyentes del sistema, que son independientes de la coyun-
tura en que se encuentre.

3.2 Sistemas cognitivos

La operación un sistema cognitivo puede dividirse en dos niveles: un nivel
conceptual, en el que el sistema opera con cantidades conceptuales, y un nivel
f́ısico en el que el sistema opera con cantidades f́ısicas, que responden a las
leyes de la f́ısica: gravedad, magnetismo, etc. y a las que nos referimos al
comienz de la sección anterior. Las cantidades conceptuales son recursos del
sistema cuyo estado representa el estado de una parte distinta del universo.
Por ejemplo, el área de memoria usada para un entero puede representar la
velocidad de un robot móvil, codificada en el estado de esos bits.

A la parte de un sistema que realiza la operación cognitiva la denom-
inaremos subsistema cognitivo. Las arquitecturas cognitivas, implementadas
en un sistema completo, responden al subsistema cognitivo de ese sistema.
operan con cantidades conceptuales, usándolas para representar onbetos del
entorno, simular el efecto de las acciones del sistema sobre éstas, etc.

Distinguiremos las cantidades abstractas, que no son medibles y que no
se refieren a cantidades f́ısicas existentes, del resto de las cantidades concep-
tuales. Entre el resto de éstas habrá cantidades que representen cantidades
f́ısicas existente actualmente, y diremos que son cantidades instanciadas, y
cantidades conceptuales que corresponden a cantidades que no existen en
este momento pero que eventualmente śı podŕıan existir o que existieron en
el pasado; a éstas últimas las denominaremos cantidades potencialmente in-
stanciables.
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Grounding y embodiment1

La relación entre una cantidad conceptual y su contraparte f́ısica responde al
problema del “symbol grounding” [30]. Nosotros nos referiremos al ground-
ing en este sentido. El mecanismo bidireccional del grounding está formado
por los mecanismos de sensado-percepción en un sentido y de grounding*-
acción en el otro. El sensado se refiere a la transformación de cantidades
f́ısicas del entorno del subsistena cognitivo (formado por el entorno del sis-
tema y el propio sistema f́ısico) en otras cantidades f́ısicas que tienen una
corporeización (embodiment) compatible con el subsystema cognitivo. La
percepción actualiza las cantidades instantiadas en el subsistema cognitivo
en función de la información que entra en el sistema a través del sensado. De
manera análoga el grounding* mapea el valor de las cantidades conceptuales
a valores de cantidades en los actuadores del sistema, cuya acción modifica el
valor de las cantidades f́ısicas en función del valor que el subsistema cognitivo
ha asignado para sus contrapartes conceptuales.

El embodiment es la corporeización en el sentido de codificción de las
cantidades conceptuales en otras cantidades f́ısicas, como el área de memoria
que representa la velocidad del robot. El grounding, por el contrario, es la
relación entre la velocidad real del robot y la variable velocidad que utiliza
el sistema de control del robot.

Objetivos

Se puede entender que un objetivo es un estado del sistema, del entorno o
de ambos a los que el sistema tiende como resultado de su comportamiento.
Como se mencionó previamente, el estado del sistema es el valor de todas sus
cantidades en un determinado instante de tiempo. Podemos definir objetivo
como estado del par (sistema; entorno). Los objetivos son conceptuales, en
tanto a que no existen en la realidad, pero se refieren a ella. En las próximas
secciones estudiaremos la influencia de los objetivos en la operación del sis-
tema.

Como se ha mencionado, el comportamiento dirigirá al sistema hacia
un objetivo. En sistemas artificiales, el objetivo queda impuesto por el
diseñador. Es decir, las propiedades caracteŕısticas de un sistema se corre-
sponden con el objetivo. Un objetivo diferente implicaŕıa propiedades difer-
entes y, por tanto, un comportamiento diferente.

1Mantenemos los términos en inglés porque la traducción al español es confusa y para
ambos términos seŕıa corporeización
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En sistemas complejos esta relaci ón se cumple solo conceptualmente,
puesto que pueden coexistir diversos objetivos a la vez, en lugar de uno solo.
En este caso, un objetivo determinará una parte de las propiedades del sis-
tema, y a su vez éstas determinarán aspectos parciales del comportamiento.

Sin pérdida de generalidad, podemos asumir que los objetivos de un sis-
tema se organizan de acuerdo a una estructura de dependencia jerárquica,
a la que llamaremos estructura de objetivos. Los objetivos de bajo nivel
de abstracción y corto alcance temporal contribuirán a realizar objetivos de
mayor alcance y abstracción. Para referirnos a unos objetivos respecto a los
otros, los distinguiremos por de mayor nivel o más altos por un lado y de
menor nivel o más bajos por el otro. Por el extremo de objetivos de menor
nivel de abstracción y alcance, la estructura de objetivos estaŕıa formada
por objetivos locales. En el extremo de mayor abstracción y alcance se com-
pondŕıa de objetivos ráız o generadores. Entre ambos extremos existiŕıan los
objetivos intermedios.
La jerarqúıa de objetivos se puede ver metafóricamente como una cascada en
cuya cumbre se encuentran los objetivos ráız, que se descomponen en obje-
tivos intermedios, y éstos a su vez en otros, hasta alcanzar la base, formada
por objetivos locales.

Autonomı́a de un sistema cognitivo

La capacidad de un sistema para hacer frente a perturbaciones o incertidum-
bres de tipo cuantitativo viene dada por su programa, mientras que su es-
tructura hipotética es lo que le puede otorgar la capacidad de adaptarse a
nuevas situaciones, a perturbaciones cualitativas. Si una perturbación no es
resuelta en esas dos partes de la organización del sistema, puede alcanzar la
estructura real del mismo, poniendo en peligro su integridad y cohesión.



Caṕıtulo 4

Principios de diseño para
sistemas cognitivos de control

En este caṕıtulo se presentan una serie de principios que se han extráıdo para
todo sistema de control cognitivo, biológico o artificial. Subyace en ellos la
inspiración biológica inevitable, pues el sistema cognitivo de referencia es la
mente humana, y el la idea –o más bien realidad– de la mente como con-
trolador. No debe entenderse esta serie de principios como una formulación
axiomática sino como una gúıa de diseño para sistemas de control cognitivos.

4.1 Cognición basada en modelos

Principio 1: Cognición basada en modelos — Un sistema se considera
cognitivo si explota modelos de otros sistemas en su interacción con ellos.

Este principio equipara conocimiento y modelos, lo que nos lleva al am-
plio debate de la cognición centrada en la representación [11], pero con un
matiz, y es el de las capacidades predictivas y postdictivas que se derivan
de la ejecución de un modelo. La idea de que la mente usa modelos no es
nueva, pero nosotros creemos que se puede ir más allá de la metáfora de la
mente basada en modelos y establecer en la ĺınea de [17] que un controlador
cognitivo ha de utilizar necesariamente modelos.

Esta definición de cognición puede resultar demasiado estricta para ser
de aplicable en general; hay procesos cognitivos sencillos en los que no parece
haber un modelo del est́ımulo de entrada. por ejemplo. Sin embargo, si se
examinan cuidadosamente se encontrarán somorfismos entre las estructuras
informacionales en el sistema y la realidad externa. El hecho es que muchas
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veces estas estructuras están impĺıcitas, integradas en los propios mecanis-
mos que las usan. Lo que define el modelo es la relación de modelado que
podemos enunciar como: un sistema A es un modelo de un sistema B, si
las relaciones causales que se dan en A se pueden mapear con las relaciones
causales en B [52]. En el caso de los sistemas cognitivos A será abstracto
y estará almacenado en la mente del sistema y B será parte de la realidad
circundante.

Un sistema puede construirse o adquirir los modelos a través de diversos
mecanismos que podemos agrupar en tres categorias:

Preconstruidos Son los modelos impĺıcitos en el sistema desde su fabri-
cación.

Aprendizaje Son los mecanismos conocidos de aprendizaje a partir de la
experiencia

Culturales Son los mecanismos que permiten al sistema integrar un modelo
ya construido por otro sistema.

La caracteŕıstica de los mecanismos de aprendizaje y culturales es que
son abiertos, permiten al sistema seguir incorporando modelos. Las redes
neuronales, por ejemplo, responden a un mecanismo de aprendizaje. No es
necesario citar las bondades que presentan como aproximadores universales.
Sin embargo, los expĺıcitos modelos aprendidos culturalmente, como puede
ser el modelo de la gravitación newtoniano, parecen mejores por su generali-
dad y aplicabilidad. No obstante, en el campo del control, para ciertas apli-
caciones las redes neuronales funcionan mejor que otros modelos expĺıcitos
matemáticos. Esto nos lleva a enunciar el segundo principio:

Principio 2: Isomorfismo de los modelos — La eficacia en la operación
de un sistema cognitivo corporeizado es función directa de la bondad de sus
modelos.

4.2 Control predictivo frente a control reac-
tivo

Estas dos modalidades de control ya fueron presentadas en el primer caṕıtulo.
Está demostrado [17] que la estrategia óptima es la que permite anticipar la
respuesta de la planta y actuar antes de que se produzca, de tal forma que es
posible teóricamente eliminar el error, cosa que por principio es imposible en
una extrategia reactiva basada precisamente en actuar en función del errror.
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Esto nos lleva a extender este resultado conocido de la teoŕıa de control a los
sistemas cognitivos:

Principio 3: Comportamiento anticipativo — Excepto en casos degen-
erados, una respuesta temporal óptima sólo puede conseguirse mediante el
uso de modelos predictivos.

Es obvio, no obstante, que los modelos nunca son perfectos y que la
realidad con frecuencia se aleja del modelo, lo que hace necesarios siempre los
mecanismos de control en lazo cerrado basados en el error para minimizarlo.

4.3 Control cognitivo integrado

Los mecanismos anteriores son los bloques sencillos con los que se construyen
controladores complejos. Los sistemas de control se organizan en lazos en
distintos niveles que abarcan diversas dimensiones: temporal, funcional, de
abstracción, etc. . El conocimiento de los modelos del sistema debe incluir
tres aspectos fundamentales: el entorno, la tarea y el propio sistema. Depen-
diendo de la situación en la organización del sistema los modelos de determi-
nadas unidades de control se referirán a determinados subconjuntos de esta
triada. El problema de mantener la coherencia y cohesión de los modelos
en toda la estructura de bloques funcionales resulta cŕıtico en sistemas como
los actuales muy distribuidos y masivamente paralelos. Esto está surgiendo
ahora en los grandes sistemas técnicos, pero era un fenómeno ya conocido en
los sistemas biológicos (ej. fenómenos de rechazo inmunológico). Esto nos
lleva a enunciar un principio adicional:

Principio 4: Generación de acción mediante modelos unificados
— La manera de maximizar las prestaciones es utilizar un modelo unificado
de la tarea, el entorno y el propio sistema.

El problema más abierto de los tres es el del modelado del propio sistema.

4.4 La percepción

Los modelos que maneja un sistema no pueden ser estáticos porque la realidad
en la que se desenvuelve es dinámica. Se precisa por tanto actualizar de
manera continua dichos modelos para conservar su utilidad. La percepción,
como se estudia profundamente en [43] es un proceso cognitivo superior al
proceso de medida que llevan a cabo los sensores y consiste en la extracción
de conocimiento de la información sensorial y su integración en los modelos.



18 CAPÍTULO 4. PRINCIPIOS SIST. COGNITIVOS DE CONTROL

Dicho proceso está dirigido por unos referentes que gúıan la extracción de
los denominados perceptos y su integración en los modelos del sistema.

Principio 5: Percepción dirigida por modelos — La percepción es la
continua actualización a partir de información sensorial en tiempo real de
los modelos integrados que utiliza el agente en una arquitectura de control
cognitiva basada en modelos.

El mecanismo perceptivo no se limita exclusivamente a la integración de
información procedente del entorno, sino que incluye también en su caso más
general la propiocepción del sistema f́ısico y la metapercepción, o sensado de
la propia mente.

4.5 La consciencia

Del análisis realizado hasta ahora sobre los sistemas de control cognitivos
podemos realizar un intento de definir algunos aspectos de la consciencia.
Del amplio espectro de fenómenos que cubre el término, nosotros utilizare-
mos “consciencia” con un significado propio, aunque en estrecha relación
con lo que en las ciencias cognitivas se denomina “consciencia del mundo”
o ‘awareness’ usando el término anglosajón. Dejaremos fuera del término
la consciencia del “yo” o autoconsciencia 1, aśı como la fenomenoloǵıa rela-
cionada del qualia.

Principio 6: Consciencia del sistema — Un sistema es consciente si
de manera continua percibe y genera significado a partir de los modelos con-
stantemente actualizados.

Parece que el termino significado nos sirve para eludir el problema de
definir consciencia y trasladarlo a la definición de significado. Sin embargo
el término significado implica una diferenci fundamental entre percepción
y consciencia, y es la evaluación de lo percibido en función a los objetivos
del sistema, y no de manera estática, sino en función de las postdicciones y
predicciones que se generan a través de la actualización de los modelos.

4.6 La atención

La principal restricción que tienen los sistemas cognitivos una vez corporeiza-
dos es que los recursos que tienen a su disposición, tanto para su operación

1utilizaremos el término autoconsciencia para referirnos a la “consciousness” an-
glosajona, que incluye “awareness” y “self-awareness”
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f́ısica como conceptual son limitados. Es por tanto cŕıtico cómo el sistema los
emplee en la persecución de sus objetivos, de manera que lo haga de manera
óptima. Esto es especialmente aśı en entornos con altos requisitos temporales
y de seguridad.

Desde el punto de vista tradicional de la AI y las ciencias cognitivas, la
asignación de recursos para cada dirección del ciclo de corporeización de la
actividad conceptual del sistema ha sido tratada como un problema separado:
en el sentido grounding*-acción corresponde al problema de la planificación,
mientras que en el sentido de sensado-percepción, incluyendo la actividad
conceptual de modeado, se trata del problema de la atención

Principio 7: Atención del sistema — Los mecanismos de atención del
sistema asignan recursos tanto f́ısicos como computacionales a los procesos
de percepción y modelado de forma que se optimiza el comportamiento del
sistema.

La atención y la consciencia están ı́ntimamente relacionadas y, no sólo en
la vida cotidiana sino en las ciencias cognitivas también, ambos conceptos
tienden a mezclarse. Desde las definiciones que se han adoptado en este tra-
bajo la distinción entre ambas es clara, y se puede establecer la relación que
las une como una relaci´on de causalidad, en la que es la consciencia, medi-
ante generación de significado y evaluación de las circunstancias presentes,
la que determina la activación de los mecanismos de atención que asignarán
los recursos del sistema de acuerdo con la evaluación.
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Caṕıtulo 5

Criterios de evaluación

En este caṕıtulo se desarrolla un criterio de evaluación de arquitecturas cog-
nitivas basado en el marco teórico descrito en el caṕıtulo 3 y en los principios
de diseño de sistemas de control cognitivos enunciados en el caṕıtulo ante-
rior. Como introducción se presenta el estudio del arte en lo que respecta a
la evaluación y medida de la inteligencia y las capacidades cognitivas tanto
en el ser humano como en agentes artificiales.

5.1 Evaluación de la inteligencia humana

Dado que el ser humano es el único sistema considerado universalmente como
inteligente, es la referencia en cualquier aspecto que a la cognición o in-
teligencia se refiere. Dado que aún no existe una teoŕıa completa sobre el
funcionamiento de la mente o la inteligencia humanas y no hay otro sistema
de referencia con el que compararlo, la única manera durante mucho tiempo
de medir la inteligencia ha sido mediante comparación de la de unos individ-
uos con otros en la realización de tareas y tests estandarizados que requieren
capacidades consideradas relativas a la inteligencia.

CI tests

El cociente intelectual, abreviado CI (en inglés IQ) es un número que resulta
de la realización de un test estandarizado para medir las habilidades cogni-
tivas de una persona, “inteligencia”, en relación con su grupo de edad. Se
expresa de forma normalizada para que el CI medio en un grupo de edad
sea 100 - es decir, una persona con un CI de 110 está por encima de la me-
dia entre las personas de su edad. Los tests se diseñan de tal forma que la
distribución de los resultados sea aproximadamente la distribución normal o
gaussiana, es decir, que siguen la curva normal.

21
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Factor de inteligencia general

Los tests de CI producen distintas puntuaciones para diversas áreas (lenguaje,
visión espacial, etc. ) y el total se calcula a partir de las puntuaciones par-
ciales. Análisis matemáticos de los resultados han mostrado que las puntua-
ciones pueden ser descritas matemáticamente mediante un factor común y
varios espećıficos de cada área, lo que ha llevado a la teoŕıa de que subya-
cente a todas las actividades cognitivas presentes en los tests de CI existe un
único factor, denominado factor de inteligencia general, que corresponde con
el concepto común de inteligencia.

Inteligencias múltiples

La teoŕıa de las inteligencias múltiples es un modelo propuesto por Howard
Gardner en el que la inteligencia no es vista como algo unitario, que agrupa
diferentes capacidades espećıficas con distinto nivel de generalidad, sino como
un conjunto de inteligencias múltiples, distintas e independientes: inteligen-
cia lingǘıstica, inteligencia lógica-matemática, inteligencia espacial, inteligen-
cia musical, inteligencia corporal-cinestésica, inteligencia intrapersonal, in-
teligencia interpersonal e inteligencia naturalista.

5.2 Medida de la Inteligencia Artificial

Desde los inicios de al IA existe consciencia de la necesidad de evaluar si un
sistema es inteligente y hasta qué punto lo es.

El Test deTuring

El test de Turing , uno de los paradigmas clásicos de la IA, es un test prop-
uesto por Alan Turing [67] para probar la inteligencia de una máquina. La
prueba consiste en un desaf́ıo. La máquina debe hacerse pasar por humana
en una conversación con un hombre a través de una comunicación de texto
estilo chat. Al sujeto no se le avisa si está hablando con una máquina o
una persona. Si el sujeto es incapaz de determinar si la otra parte de la
comunicación es humana o máquina, entonces se considera que la máquina
ha alcanzado un determinado nivel de madurez: es inteligente.

Numerosas han sido desde el principio las cŕıticas a este test, por requerir
capacidades cognitivas muy espećıficas (lenguaje), pero fundamentalmente
porque, como argumenta Searle con su “habitación china” [59], el test no
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determina si la máquina es o no inteligente, si no si se comporta como si lo
fuese.

El problema de determinar si el sistema de verdad maneja significado,
semántica, y no mera sintaxis, ha intentado ser resuelto por Zadeh pro-
poniendo un test en el que la máquina deb́ıa resumir un texto. Permanećıa,
no obstante, el problema de que el test se centraba sólo en el aspecto lingǘıstico
de la inteligencia.

PerMIS

El workshop PerMIS (Performance Metrics for Intelligent Systems), orga-
nizado anualmente por el NIST americano, pretende obtener unidades de
medida y metodoloǵıas para evaluar los sistemas inteligentes. Como resul-
tado se han elaborado ya varios White papers en los que se proponen, por
un lado, habilidades que se consideran relacionadas con la inteligencia y que
deben ser evaluadas por un test para sistemas inteligentes:

• Capacidad de manejar información abstracta y de carácter general

• Capacidad de rehacer los planes durante su ejecución.

• Manejar sensores imperfectos.

• Integrar información procedente de fuentes diversas.

• Focalizar los recursos adecuadamente.

• ...

Por otro lado, como elemento de medida de dichas propiedades se ha
propuesto la idea de un Vector de Inteligencia de múltiples coordenadas, que
mide el nivel de éxito del funcionamiento del sistema que se atribuye a su
inteligencia. Algunas e las coordenadas propuestas para el vector son:

• Profundidad de memoria temporal.

• Número de niveles de granularidad del sistema de representación.

• El tamaño del área espacial de atención.

• Dimensionalidad del problema con que puede tratar el sistema.

• ...
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Evaluación de arquitecturas cognitivas

El problema de la evaluación también se ha planteado en la comunidad de las
arquitecturas cognitivas. Precisamente durante la realización de este trabajo
fin de máster se asistió al workshop Evaluating Architectures for Intelligence
de la AAAI celebrado en Vancouver los d́ıas 22 y 23 de julio de 2007, donde
se presentó el trabajo [45]. Las alternativas que se plantean para evaluar las
arquitecturas cognitivas son dos fundamentales:

• Tests que miden una serie de parámetros del desempeño de sistemas
estandarizados en los que se despliegan las arquitecturas en una serie
de tareas también estandarizadas.

• Elaborar una teoŕıa formal de las propiedades los sistemas cognitivos
que permita obtener medidas neutrales respecto del dominio, la plataforma
empleada, etc. .

La primera opción proporciona información valiosa pero dif́ıcilmente gen-
eralizable. Además requiere que haya un sistema patrón y los experimentos,
para que proporcionen suficiente información, son costosos. la segunda v́ıa
parece la deseable, pero presenta el problema, aún no solventado, de la difi-
cultad de elaborar una teoŕıa formal para la inteligencia.

5.3 Criterio de evaluación propuesto

En esta sección se presenta un criterio de evaluación semiformal para arqui-
tecturas cognitivas basado en el marco teórico del Sistema Cognitivo General,
los principios de diseño para sistemas de control cognitivos y los requisitos
extráıdos en el caṕıtulo 2.

Organización del sistema

Una adecuada proporción de esrtuctura y programa es clave para la au-
tonomı́a le sistema (figura 5.1). De acuerdo con el principio de mı́nima
estructura, para aumentar la autonomı́a hay que minimizar la estructura
del sistema; aumentar el programa supone unas mayores prestaciones. Den-
tro de la estructura, aumentar la estructura hipotética supone aumentar la
adaptividad del sistema.

Acoplamiento controlado

La autonomı́a requiere independencia frente al entorno. Esto sólo es posible
si el sistema controla el acomplamiento con este. La percepción resulta fun-
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PROGRAMA

ESTRUCTURA

HIPOTÉTICA

ESTRUCTURA

REAL

a)

c)

b)

d)

Figure 5.1: Evaluación de la organización del sistema

damental en este sentido, aśı como que el sistema posea modelos adecuados
y precisos del acoplamiento con el entorno.

Por otro lado, dentro del sistema, minimizar los acoplamientos entre los
elementos minimiza la estructura real. La encapsulación resulta fundamental
en términos de modularidad, reconfigurabilidad y escalabilidad, que proporci-
nan mayor capacidad adaptativa. Un adecuado control de los acoplamientos
dentro del sistema cognitivo supone disponer de cantidades abstractas, en
este caso referidas a cantidades conceptuales.

Operación conceptual

El sistema debe poseer una adecuada proporción de cantidades instanciadas,
potencialmente instanciables y abstractas. Las cantidades instanciadas supo-
nen disponer de modelos más precisos del entorno, un mayor programa y por
tanto mejores prestaciones. Mayor número de cantidades potencialmente in-
stanciadas suponen mayor variedad de modelos disponibles, lo que supone
mayor adaptabilidad (figura 5.2). Las cantidades abstractas son determi-
nantes para la existencia de metaconocimiento en el sistema, que contribuye
a los más altos niveles de adaptabilidad.

Corporeización

Los mecanismos para corporeizar la operación conceptual del sistema son
cŕıticos para que una arquitectura cognitiva sea aplicable como controlador
de sistemas técnicos. La arquitectura debe por tanto proporcionar patrones
de interfaz con los sensores y actuadores del sistema, aśı como mecanismos
adecuados de percepción y grounding*.
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CAPÍTULO 2. ESTADO DEL ARTE

Figura 2.1: Mapas métricos geométricos

debido principalmente a la facilidad de visualización que ofrecen y la compa-

cidad que presentan. Otra ventaja fundamental es la filtración de los objetos

dinámicos al hacerse la extracción previa de caracteŕısticas del entorno. Los

sensores necesarios para construir estos mapas no pueden generar mucho rui-

do, puesto que han de permitir distinguir los diferentes elementos del entorno.

Otro inconveniente a resaltar es su incapacidad para proporcionar un mode-

lo completo del espacio que rodea al robot. Los puntos que no se identifican

como caracteŕısticas geométricas del mundo real son eliminados, con lo que

para ganar en robustez y compacidad se pierde información de los senso-

res. Esta limitación afecta a tareas como la planificación de trayectorias y la

exploración de entornos, reduciendo consiguientemente la utilidad de estos

mapas en la navegación de robots móviles.

En los mapas métricos discretizados,se utiliza la información de los senso-

res sin segmentar y se construye una función de densidad de probabilidad de

ocupación del espacio. Como ésta no puede cubrir todo el espacio de forma

continua, se efectúa una descomposición en celdillas y se asigna una proba-

bilidad a que cada una esté ocupada o libre. Esta división puede ser exacta,

manteniendo las fronteras de los obstáculos como bordes de las celdillas, o

mediante celdillas de dimensiones fijas que se reparten por todo el espacio

[23]. En las figuras 2.2 y 2.3 pueden verse ejemplos de ambos tipos de des-

composición. En la división en celdillas fijas se aprecia que un estrecho paso

entre dos obstáculos puede perderse con esta representación.

En este caso no se analiza la pertenencia de cada celdilla a un objeto in-

dividual, por lo que aunque el espacio esté discretizado se logra su represen-

tación de forma continua. En la figura 2.4 se puede ver un mapa discretizado

o de ocupación de celdillas de un entorno con formas irregulares que haŕıa

complicada la representación geométrica.

Este tipo de mapas puede precisar de una alta capacidad de almace-

namiento, tanto mayor cuanta más resolución se requiera. Por otra parte,

permite representaciones continuas y completas incluso a partir de datos de

sensores con mucho ruido como los de ultrasonidos, lo que los hace especial-

mente prácticos.
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Figure 5.2: Cantidades conceptuales

Conocimiento y modelos

Los modelos expĺıcitos presentan la ventaja de ser independientes de los al-
goritmos que operan con ellos. Favorecen la encapsulación y la reutilización,
algo para lo que resulta necesaria también la homogeneidad del conocimiento,
aumentando la adaptividad del sistema. Es por tanto deseable que una ar-
quitectura maneje conocimiento expĺıcito homogéneo.

El metaconocimiento, o conocimiento sobre cómo usar el conocimiento,
supone estructura hipotética y contribuye enormemente a la adaptabilidad
del sistema. El metaconocimiento permite optimizar el uso de conocimiento,
de forma que el sistema posea en cada instante una elevada proporción de pro-
grama sin que ello suponga necesitar una gran capacidad de almacenamiento
para el conocimiento (cantidades potencialemente instanciables) que no se
emplea en ese momento.

Adquisición de conocimiento

El aprendizaje es una herramienta fundamental para la autonomı́a. Permite
al sistema mejorar sus modelos, aumentando la cantidad de programa. Los
mecanismos considerados de aprendizaje permiten precisar las cantidades
instanciadas del sistema, como ocurre con el aprendizaje en las redes neu-
ronales, y aumentarlas mediante reconocimiento y categorización. Sin em-
bargo eso no repercute en un aumento de la estructura hipotética del sistema
(en todo caso permite al sistema consolidar mecanismos en la estructura
hipotética que pasan a dormar parte del programa, amentando las presta-
ciones). Para ello es necesario que el sistema puede integrar nuevos modelos
mediante los mecanismos culturales.
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Objetivos y consciencia

Los mecanismos de evaluación son fundamentales para que el sistema man-
tenga una convergencia en la persecución de sus objetivos. Corresponden a
cantidades abstractas del sistema cognitivo que suponen evaluaciones, costes,
benecifios, fiabilidad, de los modelos instanciados (la situación f́ısica real de
acuerdo con el conocimiento que de ella tiene el sistema) en base a los obje-
tivos del sistema.

Atención

Los mecanismos de atención permiten al sistema focalizar los recursos disponibles,
por ejemplo cantidades instanciables, elmentos f́ısicos sensoriales, para re-
sponder de la manera más adecuada posible bien ante nuevos eventos, o bien
ante nuevas interpretaciones (evaluaciones) de los modelos que se deriven de
la operación conceptual.
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Caṕıtulo 6

Análisis de arquitecturas
cognitivas de referencia

En este caṕıtulo analizaremos tres arquitecturas cognitivas: RCS, Soar y
ACT-R. Se han escogido estas tres, como arquitecturas representativas por
varios motivos:

• Cada una representa uno de los objetivos de las arquitecturas cognitivas
(véase la sección ??).

• Son arquitecturas ampliamente empledas por la comunidad investi-
gadora y que acumulan un largo historial de desarrollo.

• Han sido utilizadas en la construcción de sistemas comerciales.

6.1 RCS

RCS (Real-time Control Systems) es un modelo de referencia arquitectónico
para construir sistemas de control inteligente desarrollado en el NIST ameri-
cano. RCS se ha aplicado en dominios diversos, como los veh́ıculos no tripu-
lados (4D/RCS), la robótica espacial (NASREM) o las células de fabricación
(ISAM).

Descripción de RCS

La arquitectura RCS se basa en la descomposición funcional del sistema en
nodos como unidades fundametales de control, que se organizan en distintos
niveles jerárquicamente de acuerdo al nievl de abstracción y de rango espacio-
temporal. Los niveles de la jerarqúıa y los nodos son fijos, pero dependiendo
de la misión las conexiones entre nodos tanto en un mismo nivel como entre

29
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los diversos niveles se modifican, formando lo que para cada misión se conoce
como command tree. Cada nodo posee 4 módulos que realizan las funciones
cognitivas:

Módulo de procesamiento sensorial: realiza las funciones perceptuales
mediante las que el nodo actualiza sus modelos del entorno y procesa
el flujo sensorial para enviarlo a sus nodos superiores.

Módulo de modelado y Base de Conocimiento: es donde el nodo al-
macena su conocimiento del mundo en forma de modelos que cocn-
tienen objetos, eventos. El módulo de modelado ejecuta los modelos
para obtener predicciones y simulaciones que dirigen la operación per-
ceptual y permiten la planificación en el nodo de generación de com-
portamiento.

Módulo de generación de comportamiento: es el encargado de recibir
comando de los nodos superiores y realizar labores de planificación y
ejecución, que pueden incluir enviar a su vez comandos a sus nodos
inferiores.

Módulo de juicio de valor: realiza evaluaciones referentes a la fiabilidad
de la información sensorial, valor de objetos y eventos, evalúa los planes
en función de costes, eficacia, etc. .

Durante una misión, la descomposición de tareas se mapea de arriba a
bajo en la jerarqúıa de nodos, y la información procedente de los sensores
fluye de abajo a arriba actualizando los modelos con distintos niveles de
abstracción y resolución. Dentro de cada nodo se cierran lazos de control
entre el módulo sensorial, el de modelado y el módulo de generación de
comportamiento.

Evaluación de RCS

RCS es una arquitectura que proporciona una adecuada encapsulación de
la operación cognitiva mediante los nodos, y la posibilidad de modificar los
enlaces entre nodos dependiendo de la misión le otorga cierta adaptabilidad.
No obstante, el hecho de que los nodos sean fijos, aśı como su organización
jerárquica en niveles, impone ciertas restricciones. Otro de los puntos fuertes
de RCS es que cumple con el principio 1 de cognición basada en modelos,
que son además principalmente expĺıcitos, aśı como con los principios de per-
cepción e integración y nificación de modelos de entorno-sistema-tarea.
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Una de las restricciones de RCS es la heterogeneidad del conocimiento,
que si bien el declarativo es expĺıcito y hasta cierto punto homogéneo, el
conocimiento procedural es impĺıcito y fuertemente heterogéneo. Esto limita
la capacidad de evaluación a la información de tipo declarativa. No obstante,
RCS evalúa su operación conceptual mediante el módulo de juicio de valor,
lo cual le confiere cierto cumplimiento del principio 6 de consciencia. Adolece
eso śı, de modelado de la propia arquitectura: los nodos no poseen modelos
de śı mismos ni de los nodos vecinos de la misma manera que los poseen del
entorno del sistema y del propio sistema f́ısico que controla la arquitectura.
Por ello carece de las capacidades de autoconsciencia.

6.2 Soar

Soar es una arquitectura basada en la teoŕıa de la mente de Newell para la
construcción de agentes inteligentes. Se basa en un sistema de producción.

Descripción de Soar

Soar consta fundamentalmente de tres memorias e interfaces de entrada/salida
que interactúan en cada ciclo de ejecución.

Funciones de entrada/salida: actualizan al comienzo de cada ciclo los
objetos que Soar tiene en la memoria de trabajo y al final de cada ciclo
se encargan de corporeizar las acciones que sea pertinente de acuerdo
con las operaciones que aśı lo requieran y que estén en la memoria de
trabajo.

Memoria de trabajo: contiene el estado del sistema en objetos y oper-
adores posibles. Se trata del estado conceptual, pero parte del cual re-
sponde a un modelo del estado del entorno f́ısico si la arquitectura está
desplegada en un sistema real y no virtual. Los objetos de la memoria
son homogéneos y los operadores están etiquetados con preferencias.
Sólo un operador se aplica en cada ciclo.

Memoria de producción: contiene las producciones, que son reglas del
tipo if→then. En cada ciclo se disparan las producciones cuyas condi-
ciones coinciden con la situación de la memoria de trabajo. Se disparan
para proponer un operador, para comparar los candidatos, seleccionar
el que se aplica en cada ciclo y aplicarlo.

Memoria de preferencias: asignan preferencias a los operadores, que de-
terminan su elección.
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Si en un ciclo de ejecución no es posible resolver la selección del operador
Soar alcanza un impasse, se genera un nuevo subestado que consiste en la
resolución del impasse. Se produce aśı una descomposición de objetivos.
Cuando los sucesivos subestados se van resolviendo la arquitectura almacena
todo el proceso en una nueva producción. Éste es el principal mecanismo de
aprendizaje en Soar, llamado chunking.

Evaluación de Soar

Soar es una arquitectura que se centra fundamentalmente en la operación con-
ceptual del sistema, no proporciona patrones de diseño para la percepción y
la corporeización. Para su aplicación en complejos sistemas de control carece
de encapsulación de la operación conceptual, dado que todo el estado se al-
macena en la memoria de trabajo. Además carece de capacidad de operación
en paralelo, presentando un fuerte cuello de botella en la aplicación de un
único operador en cada ciclo.

No obstante Soar presenta numerosas soluciones de potencial interés: una
gestión del conocimiento homogénea en las producciones y los objetos en
memoria, lo que le proporciona además capacidad de metaconocimiento, y
un mecanismo de aprendizaje que le permite aumentar el conocmiento pro-
cedural. El mecanismo de chunking básicamente lo que hace es convertir
estructura hipotética (la estructura de subobjetivos que se genera en los
sucesivos impasses) en programa (una nueva producción), lo que supone un
beneficio notable en términos de la autonomı́a del sistema, pues posee no
sólo adaptabilidad, sino que ésta además se ve incrementada en prestaciones
mediante el chunking.

6.3 ACT-R

ACT-R es una arquitectura cognitiva y una teoŕıa del funcionamiento de la
mente humana, desarrollada por J. Anderson en la Carnegie Mellon. ACT-R
funciona como un lenguaje de programación con el que construir modelos
de determinados mecanismos cognitivos o para hacer diversas tareas, como
resolución de puzzles o el pilotaje de un avión.

Descripción de ACT-R

Al igual que Soar, ACT-R se basa en un mecanismo de sistema experto. Se
estructura en módulos opacos que sólo interactúan a través de los buffers,
que funcionan como interfaz y que sólo contienen un elemento de memoria a
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la vez. El contenido de los buffers es la representación del estado que tiene
ACT-R.

Modulos percepto-motores: realizan las funciones de percepción y ground-
ing*. Funcionan de manera concurrente y encapsulada.

Módulos de memoria: hay una memoria declarativa, que consta de conocimiento
homogéneo almacenado en unidades llamadas chunks, y una memoria
procedural consistente en producciones.

Módulo intencional: contiene los objetivos del sistema.

Identificador de patrones: es el módulos encargado de recuperar la pro-
ducción de la memoria procedural cuyas condiciones encajan en cada
momento con el contenido de los buffers, y ejecutarla. La ejecución de
una producción modifica el contenido de los buffers

Además de la operación simbólica ćıclica, en ACT-T también hay op-
eración subsimbólica, con ecuaciones de utilidad que determinan entre varias
posibles producciones cuál es la que dispara (sólo una en cada ciclo), y ecua-
ciones de activación que determinan que elemento de la memoria declarativa
se recupera. Además la operación de los módulos percepto-motores puede
ser subsimbólica. Es, por tanto, una arquitectura h́ıbrida.

Evaluación de ACT-R

ACT-R es, como Soar, una arquitectura centrada en la operación concep-
tual. Aunque tiene módulos para la percepción y el grounding*, han sido
desarrollados como modelos de mecanismos de la mente humana, con lo que
no son patrones en general aplicables para sistemas técnicos. Presenta frente
a Soar las ventajas de ser h́ıbrida, lo que le confiere cierta capacidad de
procesamiento en paralelo en los módulos, si bien con las desventajas de
manejar conocimiento impĺıcito en ese caso. ACT-R presenta mecanismos
de aprendizaje tanto a nivel simbólico con la composición de producciones
como a nivel subsimbólico con el ajuste de las utilidades y las activaciones.
No obstante, su mecanismo de aprendizaje de nuevas producciones no es tan
potente como el chunking de Soar.

6.4 Evalaución global

Podemos resumir la evaluación de las tres arquitecturas cognitivas analizadas
en las siguientes conclusiones:



34 CAPÍTULO 6. ANÁLISIS ARQ. COG. DE REFERENCIA

• RCS proporciona encapsulación y distribución de la operación concep-
tual en nodos, lo que además proporciona paralelismo y concurren-
cia. La estructura interna de cada nodo hace que haya homogenei-
dad (todos los nodos tienen la misma estructura) y que cada nodo
funcione como un subsistema cognitivo con adecuados mecanismos de
percepción, modelado, grounding* y evaluación. Es de las tres la ar-
quitectura más idónea para construir sistemas de control.

• Soar y ACT-R, si bien presentan deficiencias para ser aplicables en sis-
temas técnicos, con requisitos de paralelismo, distribución y respuesta
temporal, presentan interesantes soluciones para la operación concep-
tual del sistema, especialmente en el manejo de conocimiento procedu-
ral expĺıcito y aprendizaje, lo que proporciona gran adaptabilidad al
sistema.

• Si bien en las tres arquitecturas se genera significado de los modelos que
manejan, mediante diversos mecanismos de valuación tanto impĺıcitos
como expĺıcitos, ninguna de las tres maneja automodelos que les permi-
tan ser autoconscientes, mediante la posibilidad de generar predicciones
sobre su propia operación conceptual y evaluarlas, por ejemplo.

Si RCS presenta la mejor solución como patrón arquitectónico para todo
un sistema de control complejo, ACT-R y Soar presentan patrones muy in-
teresantes para construir los hipotéticos nodos de niveles superiores en una
jerarqúıa de RCS, con capacidades deliberativas y de aprendizaje que no son
necesarias en los nodos inferiores.
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Principios últimos

7.1 Autoconsciencia

La autoconsciencia se considera una capacidad cognitiva de tener experiencia
del mundo y de uno mismo en él. Durante mucho tiempo fue despreciado
como algo subjetivo y, por tanto, no objeto de estudio cient́ıfico posible. Sin
embargo, durante los últimos cincuenta años, debido a los avances en ámbitos
como la psicoloǵıa y las nuevas evidencias experimentales procedentes de la
neurociencia, en el ámbito de las ciencias cognitivas se ha desarrollado una
fuerte corriente de interés por la autoconsciencia y se la ha restablecido como
materia de estudio cient́ıfico. Aunque aún no se ha alcanzado un acuerdo
en la definición de autoconsciencia, si hay una cierta fenomenoloǵıa que es
considerada parte de la autoconsciencia y que D. Chalmers agrupa en:

El problema fácil incluye fenómenos que ya se pueden explicar mediante
modelos computacionales y/o mecanismos neuronales: habilidad para
categorizar y responder a entradas, mecanismos de control de la atención,
capacidad de comunicar estados mentales, etc.

El problema dif́ıcil es cómo surge actividad consciente de elementos no
conscientes como las neuronas, la autoconsciencia y la experiencia sub-
jetiva, el qualia.

Se han propuesto numerosos modelos y teoŕıas para explicar la auto-
consciencia humana e incluso proponer v́ıas para lograr construir máquinas
conscientes. Ejemplos de modelos de la autoconsciencia humana representa-
tivos son el Global Workspace theory de B. Baars [4] y el modelo relacional
de J. Taylor [64].
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La autoconsciencia para controladores cognitivos

Como se presentó en el caṕıtulo introductorio, el incremento en la compleji-
dad y los requisitos de integrabilidad y autonomı́a de los sistemas de control
actuales (y futuros) hace necesario diseñarlos de manera que parte de la re-
sponsabilidad que antes recáıa en el ingeniero de diseño o de operación, en
cuanto a reconfiguración del sistema, resolver problemas de integración, pase
a ser del propio sistema. Esta funcionalidad de:

• capacidad de autoconfiguración

• integración de información

• automonitorización.

• mantenimiento de la integridad y cohesión del sistema

requiere que el sistema de control posea un modelo no sólo de su entorno,
incluyendo la planta, sino también de śı mismo (automodelo). Es cŕıtico,
aśı mismo, que el sistema se impute agencia de sus propias acciones, y por
tanto tenga una noción del “yo” frente al entorno. Es precisamente esto
lo que constituye el concepto filosófico y biológico de la autoconsciencia.
La funcionalidad relacionada anteriormente enumerada coincide además con
las funciones que se atribuyen a la autoconsciencia desde el punto de vista
biológico, esto es, lo que Chalmers categoriza como problema fácil, que no ha
de entenderse como trivial, sino que se adjetiva como fácil en contraposición
al dif́ıcil, del que no existen teoŕıas completas sólidas que lo expliquen.

Definición de la autoconsciencia en controladores cognitivos

Teniendo en cuenta todo lo anteriormente comentado, y retomando el prin-
cipio 6 de consciencia, podemos extender un nuevo principio:

Principio 8: Autoconsciencia del sistema — Un sistema es autocon-
sciente si continuamente genera significado a partir de automodelos constan-
temente actualizados

La autoconsciencia implica que la actualización de modelos que continua-
mente lleva acabo el sistema cognitivo incluye un modelo del propio sistema
cognitivo. la diferencia fundamental entre consciencia y autoconsciencia es
que cuando se da la segunda el sistema puede entender los efectos de sus
acciones y con un sentido de agencia.
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Conclusiones y trabajos futuros

A continuación se expone un balance global del trabajo realizado aśı como
de las conclusiones alcanzadas en el mismo. También se presentan las ĺıneas
de investigación que se abren a ráız del mismo.

8.1 Conclusiones

En este trabajo se ha realizado un análisis detallado de los requisitos que
se demandan en la actualidad de los sistemas de control inteligente para sis-
temas complejos y distribuidos, como son ahora la mayoŕıa, desde las plantas
de proceso hasta los automóviles. Se ha argumentado la necesidad de dotarles
de capacidades cognitivas hast alcanzar la consciencia y la autoconsciencia,
aśı como la necesidad de un enfoque arquitectónico.

Se han analizado las arquitecturas cognitivas como una posible herramienta
para el diseño de sistemas de control inteligente. Para ello se ha extendido
un marco teórico ya existente basado en la Teoŕıa General de Sistemas para
adaptarlo a los sistemas cognitivos. Se han propuesto unos principios de
diseño para sistemas de control cognitivos, y en base a los mismos y al marco
teórico formulado se ha elaborado un criterio de evaluación para arquitec-
turas cognitivas que se ha aplicado a tres de las más representativas: RCS,
Soar y ACT-R.

Fruto de dicha evaluación se ha concluido que RCS proporciona el mejor
patrón arquitectónico para el diseño de sistemas de control, pro que, al igual
que las demás, carece de mecanismos de autoconsciencia. Soar y ACT-R
poseen, no obstante, ciertas caracteŕısticas que las hace adecuadas para im-
plementar las partes de más alto nivel de abstracción e inteligencia en un
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sistema basado en RCS.

Finalmente, se ha analizado el papel que los mecanismos de autocon-
sciencia pueden jugar en los sistemas complejos de control inteligente para
dotarles de mayores capacidades de integración, toleracia a fallos y robustez,
con resultado favorable, y se han presentado ideas de su implantación en
arquitecturas cognitivas.

8.2 Publicaciones

Parte del estudio realizado en este trabajo fin de máster ha dado lugar se ha
desarrollado en colaboración con el trabajo de otros miembros del grupo de
investigación, y ha dado lugar a las siguientes publicaciones:

• Ricardo Sanz, Ignacio López, Manuel Rodŕıguez, and Carlos Hernández.
Principles for consciousness in integrated cognitive control,
in Neural Networks, Volume 20, Num. 9 Special Issue “Brain and
Consciousness”, pages 938–946, November 2007.

• Ricardo Sanz and Ignacio López and Carlos Hernández. Self-awareness
in Real-time Cognitive Control Architectures, in: Proc. AAAI
Fall Symposium on “Consciousness and Artificial Intelligence: Theoret-
ical foundations and current approaches”, November 2007, Washington
DC.

• Ignacio López, Ricardo Sanz, and Carlos Hernández. Architectural
factors for intelligence in autonomous systems, in: AAAI
Workshop “Evaluating Architectures for Intelligence”, 22–23 July 2007,
Vancouver, B.C.

• Ignacio López, Ricardo Sanz, Carlos Hernández, and Adolfo Hernando.
General autonomous systems: The principle of minimal struc-
ture, in: Proceedings of the 16th International Conference on Systems
Science, Volume 1, pages 198–203, 2007.

• Ignacio López, Ricardo Sanz, Carlos Hernández, and Adolfo Hernando.
Perception in general autonomous systems, in: Proceedings of
the 16th International Conference on Systems Science, Volume 1, pages
204–210, 2007.
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8.3 Trabajos futuros

Como ĺıneas futuras de investigación derivadas de este trabajo podŕıan con-
siderarse dos principales. Por un lado la mejora del marco conceptual em-
pleado. Es necesario por ejemplo extender el marco conceptual del Sistema
Cognitivo General para incluir los mecanismos de autoconsciencia, aśı como
profundizar para explicar capacidades cognitivas concretas como los mecan-
ismos de inferencia o aprendizaje. también es necesario realizar una for-
mulación matemática de los criterios de evaluación para obtener métricas
cuantitativas.

Por otro lado, queda el desarrollo de una arquitectura cognitiva cpaz de
proporcionar mecanismos de autoconsciencia. En primer lugar habŕıa que
definir un modelo de referendia en algún lenguaje formal, como pueden ser
UML o SysML, y luego implementar un sistema real con los patrones creados.
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Chapter 9

Introduction. Motivation and
objectives

9.1 Motivation

Technical systems are quickly growing in complexity to address the rising de-
mands of functionality and performance, while preserving or increasing other
non-funtional requirements such as resilience and autonomy. Airplanes, cars
or chemical plants, besides to electricity networks, telecommunications and
other supporting facilities are some examples of this. All these systems in-
clude as a necessary component embedded control, which is nowadays mostly
computer or software based. Therefore control systems are becoming ex-
tremely complex. In addition, isolated systems are becoming rare, systems
are more usually communicated or integrated, and so their control systems,
which are very commonly distributed.

From an engineering perspective we are facing new challenges:

• Increase in complexity supposes a necessary increment in effort and
costs to build the control system and a need for new development and
management practices.

• Increase in size supposes that software code is growing larger and larger.
This is prone to errors that can result in system failures, in this case
coming from the control system itself.

• Increase in complexity causes a decrease in designability –the capacity
of effectively predict the characteristics of the system once build–. This
may result in a decrease in performance, but more worrying for safety-
critical systems or real time-systems, a major decrease in dependability.
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• Integration adds a new possible cause for system failure and that is of
failure due to its integration with other systems that fail.

9.1.1 Architectural approach

Focusing on systems architecture is focusing on the structural properties of
systems that constitute the more pervasive and stable properties of them.
Architectural aspects are what critically determine the final possibilities of
any computer based technology.

Architecture-based development offers the following advantages:

• Systems can be built in a rapid, cost-effective manner by importing (or
generating) externally developed components.

• It is possible to predict the global qualities of the final system by
analysing the architecture.

• The development of product lines sharing the same architectural design
is easier and cheaper.

• Restrictions on design variability make the design process more pro-
ductive and less prone to faults.

9.1.2 Up to date control techniques, from PID to AI
tools do not suffice

From the earlier 80’s with the industrial application of expert systems, AI
techniques such as fuzzy, neural networks and expert systems themselves have
been being successfully used to build control systems with higher performance
and capable of addressing a wider range of control problems. These tools and
other control techniques such as model based predictive control that exploit
knowledge about the plant –the controlled system– have improved adap-
tivity and robustness, allowing control systems to handle to some extent
unexpected events in the plant.

Let’s review briefly the evolution of control techniques.

Feedback controllers

The most common control strategy uses a simple linear feedback to com-
pensate errors, speed of change and accumulated error. The most popular in
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industry is the PID controller –Proportional-Integral-Derivative– referring to
the three terms operating on the error signal to produce a control signal. A
PID controller has the general form shown in 9.1. The PID contains a basic
model of the controlled plant implicit in its parameters.

Plant

PID Controller

Disturbances

OutputReference

+

!

uerror

u(t) = Kp · e(t) + KdTd
de(t)
dt

+
Ki

Ti

�
e(t) · dt

Figure 9.1: The PID controller

Model-predictive control

Model-predictive control (MPC) is a strategy based on predicting the future
trajectory of a system based on a model of it, and using this anticipatory
capability to determine, at present time, the control action necessary for
taking the system to a certain state in a precise future instant. This control
supposes a qualitative improvement over feedback control: it exploits explicit
knowledge about the plant to anticipate its future behaviour and act upon it.
Feedback control that bases its action on error between desired state and ac-
tual is always behind the plant and this strategy cannot be applied to timely
critical systems; MPC can overcome this. Besides, predictive capabilities
allow to generate acting strategies that optimise a certain function, such as
actuation power consumption or error minimisation.

Plant
Feedback

Controller
MPC

Plant 

Model
Disturbance

OutputReference

+

!

Figure 9.2: Schema of a model-predictive cotrol
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Intelligent control

The term intelligent control is usually reserved for control systems that use
AI tools. The control techniques we have presented so far are based on
mathematical formulations, using mathematical models of the systems to be
controlled. However, there are many systems which are not easily modelled
with these formulations. AI has provided several tools to develop other types
of control techniques that can be applied in these cases. Expert systems and
fuzzy controllers allow to use other type of knowledge –that of experts, based
on rules and not clearly defined– to implement controllers. Neural networks
uses large quantities of experimental data –which sometimes at disposal–
instead of an explicit model which may not exist or is not reliable, and allow
learning.

Model-reference adaptive control

New intelligent control techniques allow to modify or change the controller
based on knowledge about the plant. An example of this is the model refer-
ence based adaptive control (MRAC). This controller has a control law that
is used to control the plant and at the same time uses a model of the plant to
determine to what extent the real plant is departing from what was thought.
The behavioural differences between the real and the expected are then used
by the adaptation mechanism to re-tune the control law parameters to in-
crease it adequacy to the real plant.

Plant

Adaptation

Mechanism

Controller

Reference

Model

Output
Reference control

signal

control
parameters

y(t)

ym(t)

Figure 9.3: Architecture of a MRAC controller

Despite this supposes a certain level of metacontrol, in the sense that it
can be seen as a control loop over the controller that modifies it according
to the current plant situation, it is not sufficient because it do not present a
solution for the mentioned problems of complexity and failure in the control
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system itself. It exploits knowledge about the plant, but not about the con-
trol system itself.

However, this improvement has also lead to an increase of complexity in
the controllers. We are always meeting a trade-off between controller perfor-
mance and complexity.

A possible path to the solution of the increasing control software com-
plexity is to extend the adaptation mechanism from the core controller to
the whole implementation of it1.

Adaptation of a technical system like a controller can be during con-
struction or at runtime. In the first case the amount of rules for cases and
situations results in huge codes, besides being impossible to anticipate all
the cases at construction time. The designers cannot guarantee by design
the correct operation of a complex controller. The alternative is move the
adaptation from the implementation phase into the runtime phase. To do
it while addressing the pervasive requirement for increasing autonomy the
single possibility is to move the responsibility for correct operation to the
system itself. During the runtime the control system must be able to per-
ceive changes –not only in the plant– and adapt to these changes to keep the
mission assigned to it during the design phase.

Why consciousness in control?

Analysing the characteristic of this problem –action by reflection upon oneself–
, similarities between the mentioned desiderata for new intelligent controllers
and the properties related to consciousness in cognitive science have arisen.
Self-awareness is a potential solution for intelligent complex controllers ad-
dressing dependability and integration requirements. This will be presented
and adequately argued in 15

Cognitive Architectures

We have demonstrated the improvement knowledge exploitation presents to
control some systems that are complex or impossible to model mathemat-
ically. Thus cognitive capabilities are required to develop better control
systems. Besides, we have also presented the necessity of an architectural

1The percentage of code that corresponds to the implementation of the real controller
is less that 1% for simple controllers. The rest of the code is supporting and peripheral
–integration– software
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approach to the design of large complex control systems. Nowadays there
already exist control systems that combine these two visions: the cognitive
architectures. Many of them are intended to model the human mind, but
their application as control systems of robots, simulators and other software
based assets has been being investigated for at least two decades. In this
master project they cognitive architectures will be analysed to study their ap-
plication as cognitive control systems addressing the technical requirements
commented and that will be further addressed in Chapter 10.

9.1.3 ASys project

The work developed in this master project has been realised in the frame
of the project ASys of the Autonomous Systems Laboratory research group.
ASys is a long-term research project focused in the development of technol-
ogy for the construction of autonomous systems. What makes ASys different
from other projects in this field is the objective of addressing all the domain
of autonomy. We capture this purpose in the motto “engineering any-x au-
tonomous systems”.

Now our main involvement is the development of technology to increase
the level of autonomy in complex systems by means of metacontrol loops.
These metalevel control loops implement strategies similar to those of super-
visory or adaptive control but the focus of the control is both the already
addressed rejection of disturbances in the plant and, more interestingly, the
rejection of disturbances in the contoller itself, that is gaining in importance
as the controllers grow in complexity [57].

The ASys development plans follow a product line/product family strat-
egy [7]. As the SEI software product line says2:

A software product line is a set of software-intensive systems
that share a common, managed set of features that satisfy the
specific needs of a particular market segment or mission and that
are developed from a common set of core assets in a prescribed
way.

One of the central topics in ASys is the pervasive model-based approach.
An ASys system will be built using models of it. An ASys can exploit mod-
els of itself to drive its operation or behaviour. Model-based engineering and
model-based behaviour then merge into a single phenomenon: model-based

2http://www.sei.cmu.edu/productlines/about pl.html
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autonomy.

Within the context of ASys, this master project represent an effort to
establish the basement for the future detailed development of the SOUL cog-
nitive architecture, an architecture to develop complex cognitive controllers
for autonomous systems with self-awareness and conscious characteristics.

9.2 Objectives

This master project is a theoretical effort to establish a solid formal basis to
analyse actual cognitive architectures and extract the properties they must
posses so as to fulfil the requirements for current and future control tech-
nology, in the form of guidelines for the construction of integrated cognitive
control systems capable of addressing them. This main goal decomposes can
be broke down the following objectives:

1. Extract engineering requirements for a cognitive architecture to be ap-
plicable to building control systems of general purpose with high de-
pendability properties.

2. Develop an evaluation criteria for cognitive architectures based upon
the extracted requirements in the established theoretical framework.

3. Analyse exemplary cognitive architectures with the proposed evalu-
ation criteria to determine their suitability for developing integrated
cognitive controllers fulfilling the engineering requirements.

4. Identify the missing aspects in present cognitive architectures to ad-
dress the demanded requirements.

5. Propose a design blueprint for a cognitive architecture supporting con-
sciousness.
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Chapter 10

Engineering Requirements

In the previous introductory chapter the need for providing technical systems
with cognitive capacities was motivated, introducing the cognitive architec-
tures as a possible solution. Now in this chapter we will analyse from an
engineering perspective the theoretical requirements a cognitive architecture
must address independently of the domain, the specific purpose and the final
implementation it is intended for. Previously we will introduce some ideas
about autonomy and cognitive architectures.

10.1 Autonomous Systems

10.1.1 Autonomy

The term autonomous has a concrete meaning if we analyse its etymology:
“having its own laws”, from the Greek autos ‘self’ + nomos ‘law’. Thus
an autonomous system is that which fixates its own laws. However, when
applying the term to real systems several interpretations may arise:

• A system is autonomous if it can fixate its own objectives.

• A system is autonomous if performs its function in absence of human
intervention.

These definitions separately do not capture well the concept of autonomy
despite there is a feeling both address a part of it. We may give an engineer-
ing definition for autonomy as:

The quality of a system of behaving independently while pursuing the ob-
jectives it was commanded to.
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There are still many open issues in the varios fields of competence involved
in the different technical processes that subserve complex system engineering.
Two of these issues are specially relevant and shall be considered transversal
as they potentially affect many of the systems of tomorrow:

• The maximal desideratum of production engineers is both simple and
unrealizable: let the plant work alone.

• The maximal desideratum of automation engineers is both simple and
unrealizable: make the plant work alone.

Working alone –i.e. being autonomous– seems to be at the very central
objectives of most engineers. Autonomy is one of such transversal issues that
may potentialy affect most future systems.

The search for autonomy has many reasons and implications but the con-
crete research target of this field is not clear at all as demonstrates the fact
that even the very term autonomy has many interpretations. But the search
for autonomoy is a major thrust in systems innovation. This is generally true
for two main reasons: economical and technical.

Economical motivation is a major force because automated plants are less
costly from an operational point of view (human personnel cost reduction,
improved operating conditions implying less failures, etc. But technical rea-
sons are, in some cases, no less important because automated plants can be
more productive, can operate fast processes beyond human control capabili-
ties, can be made safer, more available, etc.

10.1.2 Bounded autonomy

When confronting the challenge to build an autonomous system, engineers
are not pretended to build a system with full universal autonomy, that is, a
system capable of achieving and/or maintaining a certain any of itself and the
environment in the desired time without human intervention. That system
would need unlimited resources and is not even physically realisable. What
is looked for is a system that would perform as autonomously as possible a
certain task in a certain environment. This triad system-task-environment is
what defines the problem of engineering an autonomous system[56].

Building a fully autonomous system for a certain task in a given envi-
ronment, however, is in the general case, in which the environment and the
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system to be controlled present uncertainty, a daunting task. There are many
issues to take into account and usually a less than complete knowledge on
how to handle them. It may be not easy to achieve technologically or not
profitable economically.

• Engineers want made-to-fit autonomy.

In addition, for industrial applications such as production systems, no-
body wants the plants to be fully autonomous because of trust. Not just
due to the perceivable higher robustness of human behaviour but because in
general full autonomy would mean that the systems were not complying with
the owner objectives but with theirs. We want to be able to make the system
being autonomous up to the level where this autonomy do not violate some
constraints imposed by design.

• Engineers want bounded autonomy.

In conclusion, what we as automation engineers is bounded and made-to-
fit autonomy.

10.1.3 Uncertainty

Let’s analyse with more detail one of the main problems of autonomy and
control in general: uncertainty. Taking the triad system-task-environment,
we can agree that uncertainty comes from the environment and the system,
being the task well defined. Traditionally uncertainty has been regarded as
affecting the environment, since artificial systems were considered as per-
fectly defined in both static structure and dynamic operation by definition.
This was so even when referring to large production plants in which chemical
processes were and remain not so well known, because considering as system
only the control system and including the plant as part of the environment
seemed to keep uncertainty bounded to environment. Notwithstanding, we
have showed in the previous chapter that when control system became con-
siderably large and complex it is unavoidable uncertainty coming from the
system itself.

In control engineering uncertainty refers to the operation of the controlled
plant departing from its model, due to unmodelled dynamics that are con-
sidered as perturbances.

From a general perspective we shall distinguish two main types of uncer-
tainty: intensive and qualitative.
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Intensive uncertainty refers to the deviation of the controlled variables
from their desired values. Feedback control mechanisms enable correc-
tion of this deviations. An impressive example of this is a humanoid
robot walking with an accurate gait to maintain balance.

Qualitative uncertainty refers to the occurrence of unexpected events that
qualitatively change the situation. Take the example of the previous
robot stepping on a ball.

10.1.4 Intelligence for autonomy

Classical control strategies have been successfully dealing with intensive un-
certainty, from simple feedback controllers to complex robust control strate-
gies. However, they are limited by the mathematical formulation that fre-
quently cannot model reality adequately. This is the reason of the existence
of qualitative uncertainty. Intelligent systems, which permit to exploit knowl-
edge to the control system itself at runtime and not only at the design stage,
are capable of dealing with qualitative uncertainty to some level.

Qualitative uncertainty requires that the system interprets the unex-
pected situations evaluating them with respect to the system’s objectives
and reacting to it dynamically in real time. Exploiting knowledge is re-
garded as a promising –and many claim the single– way to cope with it.
Therefore intelligence or cognitive capabilities are desirable to reach higher
levels of autonomy, allowing the handle of qualitative uncertainty as well as
intensive.

10.2 Cognitive Architectures

A cognitive architecture is a blueprint for intelligent agents. It proposes
(artificial) computational processes that act like certain cognitive systems,
most often, like a person, or acts intelligent under some definition. Cogni-
tive architectures form a subset of general agent architectures. The term
architecture’ implies an approach that attempts to model not only behavior,
but also structural properties of the modelled system. These need not be
physical properties: they can be properties of virtual machines implemented
in physical machines (e.g. brains or computers).

We shall distinguish three main categories of cognitive architectures ac-
cording to their purpose:
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• Architectures that model human cognition. One of the main-
streams in cognitive science is producing a complete theory of human
mind integrating all the partial models, for example about memory,
vision or learning, that have been produced. These architectures are
based upon data and experiments from psychology or neurophysiology,
and tested upon new breakthroughs. However, this architectures do
not limit themselves to be theoretical models, and have also practical
application, i.e. ACT-R is applied in software based learning systems:
the Cognitive Tutors for Mathematics, that are used in thousands of
schools across the United States. Examples of this type of cognitive
architectures are ACT-R and Atlantis.

• Architectures that model general intelligence. This are related
to the first ones but, despite of also being based upon the human mind
(as the only agreed intelligent system up to date), do not constraint
to explain the human mind in its actual physiological implementation.
They address the subject of general intelligent agents, mainly from a
problem-solving based perspective. Example of these architectures are
Soar and BB1.

• Architectures to develop intelligent control systems. This ar-
chitectures have a more engineering perspective, and relate to those
addressing the general intelligence problem, but focusing of applying
it to real technical systems. They are intended as more powerful con-
trollers for systems in real environments, and are mainly applied in
robotics and UAV’s and UGV’s 1. Some examples of this architectures
are 4D/RCS and Subsumption architectures, despite some debate on
the last ones about if they can be considered ‘cognitives’.

We are interested in cognitive architectures in the third case of using
them to build controllers so as to achieve higher degrees of autonomy.

10.2.1 Classification of cognitive architectures

Cognitive architectures is an interdisciplinary research area in which con-
verge the fields of artificial intelligence, cognitive psychology/cognitive sci-
ence, neuroscience and philosophy of mind. Cognitive architectures can be
divided between the two main paradigms that exists in these fields:

1UAV: Unmanned Aerial Vehicle
UGV: Unmanned Ground Vehicle
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Connectionist approach

The central connectionist principle is that mental phenomena can be de-
scribed by interconnected networks of simple units. The form of the
connections and the units can vary from model to model. For example, units
in the network could represent neurons and the connections could represent
synapses. Another model might make each unit in the network a word, and
each connection an indication of semantic similarity.

Computationalism or symbolism

the computational theory of mind is the view that the human mind is best
conceived as an information processing system very similar to or identical
with a digital computer. In other words, thought is a kind of computation
performed by a self-reconfigurable hardware (the brain).

There are of course hybrid architectures that have a part of each paradigm,
such as ACT-R, with its symbolic and subsymbolic levels.

Another classification related to the field of intelligent agents distinguish
between deliberative and reactive architectures.

Deliberative architectures. These architectures come from the GOFAI
(Good Old-Fashioned Artificial Intelligence) paradigm. The working
of a deliberative agent can be described in terms of a sense-model-
plan-act cycle. The sensors sense the environment and produce sensor-
data that is used to update the world model. The world model is then
used by the planner to decide which actions to take. These decisions
serve as input to the plan executor which commands the effectors to
actually carry out the actions.
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Figure 10.1: The common structure of a deliberative architecture.

Reactive architectures. Reactive architectures appeared in the 80’s in op-
position to GOFAI, claiming that there is no need of representation of
the world for an intelligent agent having the own world at disposal[11].
Reactive architectures are designed to make systems act in response to
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their environment. So instead of doing world-modeling and planning,
the agents should just have a collection of simple behavioral schemes
which react to changes in the environment in a stimulus-response fash-
ion. The reference for reactive architectures is Brooks’ Subsumption
architecture [10].
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Figure 10.2: The reactive architecture

There are also in this case hybrid architectures that combine both reflec-
tive and reactive capabilities, like RCS or ATLANTIS. in fact for a cognitive
architecture to be useful for real technical systems the hybrid approach seems
not only appropriate but necessary.

It is also remarkable that the symbolic paradigm is strongly related to
deliberative architectures and the connectionist with the reactive approach,
despite there is a full gradation between the extremes and in practice most
architectures used in real systems, and not only simulated environments, are
hybrids to some extent.

10.3 Requirements for a cognitive architec-
ture

For us a cognitive architecture is a matter of interest from a control engineer-
ing perspective. It provides the architecture for intelligent control systems. In
this section we will analyse the requirements a cognitive architecture should
meet to be of applicability in the development of complex cognitive control
systems.

10.3.1 Technical Systems

In this master project we are looking for the application of cognitive archi-
tectures to build more powerful controllers for complex systems, in the sense
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of being more robust, dependable and provide better performance and au-
tonomy.

Cognitive architectures, as large and complex control systems, are soft-
ware based implemented. A cognitive architecture desired for developing
better controllers should then meet the requirements demanded to real-time
and safety-critical software systems.

Dependability

Dependability considerations have always been a matter of worries for real-
world engineers. But today, in many complex technical systems of our en-
vironment –transportation, infrastructure, medical, etc.– dependability has
evolved from a necessary issue just in a handful of safety-critical systems to
become an urgent priority in many systems that constitute the very infras-
tructure of our technified world: utilities, telecoms, vetronics, distribution
networks, etc.

These systems are complex, large-scale and usually networked structures
built to improve the efficiency of human individuals and organizations through
new levels of physical integration, cognitive integration, control and commu-
nication. However, the increased scalability, distribution, integration and
pervasiveness is accompanied by increased risks of malfunction, intrusion,
compromise, and cascaded failures. Systems do not only fail due to their
defects or their mismatches with reality but due to their integration with
others that fail. Improving autonomy into these systems can mitigate the
effect of these risks in system dependability and even survivability.

Now we present the requirements related to dependability considerations
that we require a cognitive architecture to meet:

Availability

Availability can be simply defined as the proportion of time a system is in
a functioning condition. It is critical for supportive infrastructures such as
electric networks or air traffic control systems, were human lives could depend
on it, and for many industries such as those of continuum process.

Safety

The architecture must contribute to guarantee that in the case of failure,
personal harm and equipment damage is not occurring or to be minimised.
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Reliability

Reliability is the ability of a system or component to perform its required
functions under stated conditions for a specified period of time.

It is a measure of the success with which it conforms to some authoritative
specification of its behaviour. It is also referred to as fault-tolerance and
involves fast failure detection and localisation, fault confinement or graceful
degradation.

Maintainability

The architecture must be designed in a way so it may undergo repairs of
evolution. As systems grow in complexity maintainability becomes a critical
property. Large-scale production systems, for example, undergo during its
operating life changes of many of its elements, from simple valve and sensor
replacement to the substitution of the field buses or SCADA systems.

Scalability

The cognitive architecture shall be designed in such a way that it would be
easy to add new resources to the system, would they be physical such as
new sensors, actuators or communication systems, or cognitive, such as new
algorithms. Scaling the system must be possible not only from its developer
but also for the system itself.

Integration

Integration is a critical requirement derived from scalability, but also from
the non-isolation of today technical systems, which are usually connected to
other system from whom receive or to whom they provide external function-
ality. Two systems realised with the architecture should be able to integrate
without no more human intervention than physical installation. The archi-
tecture must provide adequate interface adaptation so as to allow successful
interaction and co-operation for systems within the same application but
independently developed.

Survivability

Survivability emerges as a critical property of autonomous systems. It is
the aspect of system dependability that focuses on preserving system core
services, even when systems are faulty or compromised. As an emerging
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discipline, survivability builds on related fields of study (e.g. security, fault
tolerance, safety, reliability, reuse, verification, and testing) and introduces
new concepts and principles.

A key observation in survivability engineering –or in dependability in
general– is that no amount of technology –clean process, replication, security,
etc. – can guarantee that systems will survive (not fail, not be penetrated, not
be compromised). Of special relevance in the case of complex autonomous
information-based systems is the issue of system-wide emerging disfunctions,
where the root cause of lack of dependability is not a design or run-time
fault, but the very behavior of the collection of interacting subsystems. In
this case we can even wonder to what degree an engineering-phase approach
can provide any amount of increased survivability or we should revert to the
implementation of on-line survivability design patterns than could cope in
operation time with the emerging disfunctions.

10.3.2 Real-time operation

To be used for controlling systems operating in real environments, the cog-
nitive architecture must meet the same requirements as other real-time soft-
ware intensive systems, providing predictable responses in guaranteed time
to externally generated input.

Predictability

Despite the desiderata of autonomy to be achieved, the cognitive architecture
must provide a priori guarantee of behaviour bounded within safety limits.
Due to the probabilistic nature of some methods in AI, this is a hard require-
ment for a cognitive system to be achieved. However, to be of application in
safety-critical system, the architecture must be designed in a way that the
resultant behaviour in the system is to be predicted within appropriate safe
limits.

Guaranteed response times

The architecture must guarantee adequate response time to extern inputs.
There is no point for an architecture in providing mechanisms for powerful
deliberative and predicting functionality if meanwhile the system can not
respond properly to the fast changing environment.
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A derived requisite for the cognitive architecture is concurrence and
parallel operation to realise the previously presented compromise between
anticipatory and deliberative control and reactive control.

10.3.3 Generality

The architecture should be the more general as possible to be applicable in
the design of systems ranging from the largest and more complex ones, i.e.
the control system of a nuclear plant, to the simpler ones, i.e. a thermostat.
There is obviously no benefit in designing an isolated thermostat with such a
complex and powerful tool as a cognitive architecture is. There already exist
well known and appropriate techniques for that. But what about if that
thermostat is to be integrated in a large chemical plant? Then, designing
the plant and the thermostat with the same architecture will ease the task
considerably. This directly relates to integration and scalability. The
requirement for generality spreads across many dimensions:

• Space (localisation): from localised systems to complex wide-area
plants.

• Time (multiple time-scale loops): from slow to fast and to hard real-
time.

• Rationality (levels of thought): from minimal intelligence to human-
level and beyond.

• Size (problem dimension): from embedded to mainframe hosts.

• Precision (uncertainty): from crisp to fuzzy processing.

These problems have been addressed by diverse design strategies, but
they have all presented problems with scalability while preserving surviv-
ability. This is the reason why we have added a new aspect into the ASys
core requirements: the capability of the technology to handle itself. This
requirements translate into the following requirement for a cognitive archi-
tecture.

• Self-x: refers to the capability of the architecture to operate on it-
self. This requirement will be further decomposed and analysed in the
following section.



62 CHAPTER 10. ENGINEERING REQUIREMENTS

10.4 Cognitive properties

Here we are going to analyse the requirements for the main traits of an
artificial intelligent system that are derived from the previously presented
requirements.

10.4.1 Perception

Recognition

Identifying patterns in sensory inputs as known entities in the systems knowl-
edge database.

Generalisation

The system must be able to extract common patterns from several inputs to
create a category or label and facilitate knowledge reutilisation and exploita-
tion.

Categorisation

Categorisation is closely related to recognition and generalisation. It is the
assignment of perceived objects, situations and events to known categories
or concepts.

10.4.2 Problem solving and action execution

Planning

The desired cognitive architecture must provide support for planning. Pre-
building sequences of actions to reach a certain goal is sometimes the only
way to achieve it, since it is usually not reachable in a single action step.

Prediction

Prediction is a derived requirement of planning capabilities. Planning is only
possible when it is possible for the system to predict the effects of its actions.
In addition to anticipating results from its own actions, prediction also allows
the system to anticipate the future consequences of present sensory inputs
from the environment, thus allowing fast response times than when not acting
until those consequences are sensed.
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Reactive behaviour

The architecture must also support closed-loop strategies for action execu-
tion, since they are the single alternative to guarantee error minimisation.
Predictive open-loop strategies can not guarantee it in general because de-
pend on the identity between the model (knowledge) used to predict and
reality, which can never been guaranteed.

10.4.3 Knowledge

Representation

The cognitive architecture must be independent of the formalism chosen to
represent its knowledge, since the last one could depend on the domain and
final application of the architecture in each case.

The architecture should be able to maintain knowledge in different forms
of encoding or different formalisms–i.e. 2D maps, productions, fragmented
images, semantic networks–, and keep it connected in an unified knowledge
base. An ontology, which would vary depending upon the particular appli-
cation of the cognitive architecture shall be used with this purpose within
the architecture.

Implicit and Explicit

Implicit knowledge is embedded in the algorithms used by the architecture.
To use an analogy from control, i.e. implicit knowledge about the plant is
embedded in the parameters of a PID controller. Knowledge is explicit when
it is separated from the algorithm that uses the knowledge. In this text when
we talk about implicit or explicit knowledge we refer to the encoding of that
knowledge.

Implicit knowledge has the advantages of simplicity and efficiency, and
can be related to faster response times since it is ’wired’ in the algorithm or
the architecture. However it is not flexible and do not permit manipulation or
deliberation upon it. On the other hand explicit knowledge is less efficient but
allow manipulation independently of its content and other meta-knowledge
operations.
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Procedural and Declarative

Declarative knowledge is knowledge that represents fact. Procedural knowl-
edge represents skills.2 The cognitive architecture must be able to support
both types of knowledge

Meta-knowledge

Knowledge on how to apply knowledge, or on how to evaluate it in terms
of utility or reliability is essential for a cognitive architecture intended to be
used for constructing systems with higher levels of intelligence. It is related
to scalability properties.

10.4.4 Learning

Learning is a critical aspect to be supported in the cognitive architecture to
provide increased autonomy. Implicit learning, identified with algorithm pa-
rameters tuning and refinement, allows improvement in system performance
without external intervention. Explicit learning in the sense of augmenting
knowledge, both declarative and procedural allows the system to adapt to
novel situations and improve time response when encountered again.

10.4.5 Self-x

Biologically inspired, self-x consists of a set of capabilities of the cognitive
architecture operating on the system, including the architecture itself.

Self-monitoring

The architecture must be able to supervise the system operation, including
the architecture’s own operation.

2In the literature they are usually identified with explicit –for declarative– and implicit
–for procedural– knowledge, because declarative knowledge has usually been encoded ex-
plicitly as labels or concepts and relations between them, and procedural knowledge has
been equated to algorithms. However these to categorisation strictly refer to two different
issues about knowledge, which are how it is encoded and what its contents are. Declar-
ative knowledge can also be implicit, i.e. in a PID controller the values of the systems
poles are implicit in its parameters, and procedural knowledge can also be explicit, i.e. in
productions in production systems
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Self-reflection

With the information provided by self-monitoring, the architecture must be
able to drive mechanisms of reflection over its own operation, to detect both
the entailments of past decisions on the present state and operation and
future consequences of present decisions and infer possible ways to improve
and eventually optimise operation.

Self-repairing

The architecture must be able to detect errors in its ‘mental’ operation, and
take appropriate actions to prevent functional degradation and eventually
eliminate the errors.

Self-maintenance

To address the growing complexity and size of technical systems, an archi-
tecture should provide mechanisms for the system to handle its own mainte-
nance.

Self-reconfiguration

The architecture must be able to change its operation and even its configu-
ration to adapt to unexpected and new situations.

The whole previous self-functionality is biologically related to Self-awareness
a more general property, synthesising all the previous ones, that allow the
architecture not just to monitor its own state, but to understand the func-
tional implications of the observed state and take appropriate actions actions
over itself.
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Chapter 11

Theoretical Framework

In this chapter we present a theoretical framework for analysing cognitive
architectures. They are usually biologically based and involve issues from
different fields: AI, computer science, psychology, control, etc. . In addition,
we are interested in them for its application to engineer autonomous systems
for different domains. Therefore, a general framework is needed. The General
Systems Theory has been selected and an extension and particularisation of
it, the General Cognitive Autonomous System framework –which has been
developed at the Autonomous Systems Laboratory within the ASys project–
will be presented in this chapter.

11.1 General Systems Theory

11.1.1 Overview

Systems theory is an interdisciplinary field of science and the study of the
nature of complex systems in nature, society, and science. More specificially,
it is a framework by which a system is understood as a set of elements, each
with its own properties, and a set of relations between them that causes the
system to present properties that can not be inferred by only analysing its
elements separately. The system could be a single organism, any organisa-
tion or society, or any electro-mechanical or informational artifact. Ideas in
this direction have been pointed out back to personalities such as Leonardo
or Descartes. However, Ludwing Von Bertalanffy with his works on General
System Theory [68] in the middle of the 20th century is regarded as the
pioneer formulating the concept as it is understood nowadays. For the for-
mulation of our framework for cognitive autonomous systems we have chosen
the formulation by George J. Klir [37], which is a precise one we have found

67
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desirable for its application in an engineering domain.

11.1.2 Fundamental concepts

Through the following sections we will present the basic ideas and concepts
of the General Systems Theory by George J. Klir.

Let us think about what we understand by system, by considering it in
relation to what surrounds it. If all possible entities form the universe, a
system can be regarded as a part of it, which is considered isolated from the
rest for its investigation. All which is not system is called environment. The
different disciplines of science share this general understanding in particular
ways, usually differentiated from each other in the criteria for separating the
system from the universe.

The observer selects a system according to a set of main features which
we shall call traits. They will be characterised by the observer through the
values of a set of quantities. Sometimes, these values may be measured, be-
ing the quantities physical, such as length or mass. Other times quantities
are abstract, and they cannot be measured. The instants of time and the
locations in space where quantities are observed constitute the space-time
resolution level. The values of the quantities over a period of time consti-
tutes the activity of the system.

In general, analysing a system one may find that observed quantities are
not sufficient to explain its behaviour. There must exist other quantities,
which we shall call internal, which play a mediatory part. The observed
quantities of the system will be called external. We shall call the set formed
by all the values of the system quantities at a certain instant the state of the
system, distinguishing between internal state and external state.

The main task of the observer is to explain the activity of a system. This
will be accomplished by identifying patterns in the activity of the system.
The quantities of the system may satisfy time–invariant relations, by which
the values of some quantities may be expressed as function of others. The set
of all time–invariant relations is the formal notion of behaviour of the system.

We may realise that the behaviour is due to the properties of the system.
In other words, a system with different properties would exhibit a different
behaviour. The set of all properties will be called the organisation of the
system.
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11.1.3 Defining Systems

In this section, we are going to present fundamental concepts of systems from
two points of view. First, by considering its constant parts. Then, by con-
sidering the system from the point of view of its evolution in time. Finally,
we shall enumerate the requirements for defining a system.

The study of a system as a whole may result difficult due to complexity
or to non-observability of some parts. In order to analyse complex systems,
the set of quantities is divided into groups, and each studied separately from
the rest, as if it were a system on its own. Generically, each of these groups
will be called subsystem. A subsystem is also called element of the system,
to indicate that it is considered a component of it. There may be elements
which share a group of quantities. This group is called coupling between the
elements.

ENVIRONMENT

SYSTEM

quantities

coupling

system-environment

elements

coupling

time-invariant-relations

Figure 11.1: System, environment, quantities, time-invariant relation, ele-
ments and couplings.

If we conceive the system in terms of its elements, we realise that it is
formed by a set of elements, which we shall call universe of discourse, and
a set of couplings. Elements and couplings are structured following a par-
ticular topology which we shall call structure of universe of discourse and
couplings of the system, and abbreviate by UC-structure. However, the sys-
tem is not perfectly determined by its UC-structure, for the dynamic aspects
of the system are unspecified. In order to complement the description of a
system given by its UC-structure, it is necessary to analyse the evolution of
the values of its quantities.
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If we imagine a system at a certain point of its activity, we will find its
quantities at certain values, forming its state. At the next instant of obser-
vation, the system will have evolved to a different state. We shall call this
evolution a state transition. We may assume that, given the system at a
certain state, not any transition is possible, or, in other words, that only a
set of other states is reachable from the original one.

We may understand that each state is associated to a set of possible
transitions. The set of all possible states of the system and their respective
transitions form the state–transition structure of the system, abbreviated by
SC-structure.

The necessary information for perfectly defining a system consists of its pri-
mary traits [37]:

1. The set of external quantities together with the resolution level.

2. A given activity.

3. Permanent behaviour.

4. Real UC–structure.

5. Real ST–structure.

If a definition contains only some of the five primary traits, it results in a
partial definition, that leaves aspects undetermined. In this case, we consider
it defines a class of systems instead of a system in particular.

11.1.4 Kinds of Behaviour and Organisation

If we consider a particular system during a particular activity, we may observe
that some of the time-invariant relations between its quantities may hold for
a certain interval but eventually change. We shall say that these relations
correspond to the local scope. Observing the same system during a different
activity, we may observe that some of the time-invariant relations hold. If
we again observe the system during a third activity, we could find that some
of these relations would have changed. We would say they are of relatively
permanent, for they hold for only some of the activities of the system. If we
were to observe the system during an infinitely large number of activities, we
would find that a particular set of relations would always hold between its
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quantities. They would be permanent. Accordingly, we can distinguish three
kinds of behaviour [37]:

• Permanent behaviour.

• Relatively permanent behaviour.

• Temporary behaviour.

The first may also be called real behaviour. The second, known behaviour.
Temporary behaviour refers to the local scope, for it holds only for sections
within a particular activity.

We may observe that permanent and relatively permanent behaviour may
not be clearly distinguished from each other when analysing systems. This is
due to the impossibility to test the temporal persistence of relations beyond
a restricted range of activities.

Let us return to the organisation of the system. We may realise that
the different behaviours derive from different kinds of properties. We may
distinguish two main kinds, which we shall call program and structure. The
temporary behaviour of a system derives from its program, which is the set
of properties of local scope. Permanent and relatively permanent behaviours
derive from the structure of the system, which we may in turn classify in real
structure and hypothetic structure, [37], so that the causal relations are as
follows:

organisation −→ behaviour

real structure −→ permanent behaviour

hypothetic structure −→ relatively permanent behaviour

program −→ temporary behaviour

11.1.5 Example: Quantities, Environment, UC and ST-
structures

Let us imagine we design a simple mechanical oscillator as the one in figure
11.3. When excited, the mass will describe harmonic motion at a frequency

of 2π
�

k
m . This frequency is fixed for constant values of the spring constant,

k, and the mass, m, and it can therefore be used as a time reference for a
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PROGRAM

HYPOTHETIC

STRUCTURE

REAL
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Figure 11.2: Organisation of a system

Figure 11.3: Mechanical Oscillator. A mass m, coupled to a spring of rigidity
constant k, coupled to a fixed support.

larger system. This principle is used in mechanical watches and clocks.

UC-structure

We may distinguish three elements in the system, which define the uni-
verse of discourse. They are: mass, spring and support. The couplings
between them are as follows: the mass transmits a force F to the spring.
The spring, in turn, fixes the position of the mass, x, relative to the spring’s
equilibrium point. The spring transmits the force to the support, which re-
turns an equal and opposed reaction force FR to the spring. On the other
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hand, the support transmits force F to the environment, which returns a
reaction force FR.

The three elements and their couplings define the structure of universe of
discourse and couplings of the system (UC-structure) shown in figure 11.4.

There is one coupling between system and environment which, for clarity,
has not been shown. It is the action of the operator or device (part of the
environment) that sets the initial conditions for the system.

Figure 11.4: Oscillator UC-structure.

ST-structure

In order to analyse the state–transition structure of the system, let us
divide operation of the system in three regions, as shown in figure 11.5.

In region 1, the spring admits no further compression, imposing the con-
straint x = xc. In region 2, the spring follows Hooke’s law, and therefore
its force is proportional to the displacement from the equilibrium point, x.
In region 3, the spring is over its limit of elasticity (at x = xt) and can be
assumed as a rigid rod, therefore imposing x = 0 and ẍ = 0. Although it
is not represented in the figure, if x >> xt, the spring would break (region 4.)

These constraints define the states and transitions of the system in regions
1 and 3. Region 2 can be determined by state–space analysis. In this region,
the system is described by:

m · ẍ + k · x = 0

The dynamics of the system is given by this equation and a set of initial
conditions. We can consider two state variables, x1 and x2, so that1:

1We might realise that the choosing of state variables is arbitrary. A different x1 and x2
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Figure 11.5: Regions of Operation of Oscillator. lc– length at maximum
compression, when the spires of the spring are adjacent to each other. leq–
length at the equilibrium point of the spring, x = 0. lt– length at the limit
of elasticity of the spring.

x1 = x

x2 = ẋ1

The equation of the system can then be expressed in the classical form
ẋ = Ax + Bu, where x is the state vector, A and B are matrices and u
represents the input to the system:

could have been chosen leading to a different, but equivalent, analysis. These correspond
to the classical analysis of this system.
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�
ẋ1

ẋ2
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�

x1

x2

�

i.e.
We observe that the system is autonomous, i.e.: it has no B matrix and

no inputs (u).

This system is represented in the phase plane by concentric ellipses (circles
if suitable values of k and m are chosen) as shown in figure 11.6.2 If the mass
is set loose at a certain initial position, x0, the state variables will follow the
ellipse containing x1 = x0.

Figure 11.6: Oscillator Phase Portrait in Region 2.

The frequency in which a trajectory is repeated is f = 2π
�

k
m , for the

solution of the system equation is:

x = x0 · sin
�

k

m
· t

2We realise that building phase plane representations (also called phase portrait) of
systems might not be straightforward. Tools such as Matlab provide means for this. By
hand, two methods are described in [61, pp.23-29].
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However, this only holds for region 2. Globally, we may understand the
phase portrait of the system will be as shown in figure 11.7. The system
cannot exist in coloured regions.

To the left of xc, the spring can be compressed no further. We shall
assume that the support will absorb the energy that would push the mass
further to the left, to a hypothetical position xfc:3

� xfc

xc

kx · dx

To the right of xt, the spring is a rigid rod. Any initial conditions x0,
such as points d, are equilibrium points.4

In region 2, between xc and −xc, the system follows Hooke’s law and
the trajectories are elliptical, as explained above. For initial conditions in
(−xc, xt), such as points a, b and c, the system follows the corresponding
ellipse until the spring can be compressed no further. It then evolves toward
the ellipse passing through xt. This ellipse is, therefore, a limit cycle.

Let us consider a set of typical states within the continuum of the figure,
as indicated in figure 11.8. The structure of states and transitions for this
set is represented in figure 11.9.

As we have mentioned previously, the definition of a particular oscillator
is completed by a set of initial conditions. The system portrayed in figures
11.4, 11.8 and 11.9, which stands for many possible initial conditions, stands,
therefore, for many particular systems. We can say that these figures define
a class of systems. In other words, they define a general system, which can
exist in multiple, different forms.

In order to use our oscillator in a real mechanical device, we must define
a starting point for its oscillation, in other words, a set of initial conditions.

These are the initial values for x1 and x2. Physically, initial position and
speed of the mass. In figures 11.8 and 11.9, we have portrayed the system
under different initial conditions assuming x2 = 0. This is not necessary.

3This is an ideal case. In reality, the energy absorbed by the support, the environment
or both would be between 0 and this value. It would be determined by the elasticity of
the materials involved.

4We have simplified the problem in this region for clarity, by assuming a sudden pass
from a spring constant k to a rigid rod. An intermediate region would exist in reality,
in which plastic deformations of the spring would occur, by which the system would not
recover its position at equilibrium, x0 (ellipses would progressively shift to the right.) As
a result, the dynamics of the system would grow more complex and the phase portrait
would show phenomena out of the scope of this text.
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Figure 11.7: Oscillator Phase Portrait.

For non–zero x2, the system would follow the corresponding ellipse through
(x01, x02). Mechanically, it is more complicated to build such device, and
therefore we shall continue assuming x2 = 0.

Let us now consider a particular oscillator, under specific initial condi-
tions, (x0, 0) so that x0 ∈ (−xc, xt). Its phase portrait and ST–structure,
subsets of figures 11.8 and 11.9, are shown in figure 11.10.

Quantities, State

In order to analyse the ST–structure of the system, we have used two
state variables, x1 and x2, which have proved advantageous, allowing us to
apply powerful methods of system modelling to provide a state–space de-
scription of the system. However, we might realise that our definition of
state, in section ??, does not correspond to these chosen state variables. In
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Figure 11.8: Oscillator Typical States.

fact, in our diagram of the structure of universe and couplings, figure 11.4,
they do not even appear. Let us see how both views, the (x1, x2) on one side,
and the (x, F ) on the other, come together.

Instead of adopting the point of view of the designer, we shall imagine
that we are to analyse an oscillator which is already constructed and working.
We are going to imagine that we chose to observe quantity x only (external
quantity.)

The relation between x and the state variable is straightforward: x1 = x.
The external state of the system is therefore equal to x1.5

We should find, however, that the external quantity x would not explain
all the aspects of the system. Experimenting with the system, we would find
that the part played by k and m would be undetermined. If we stroke the
mass during its motion, we would not be able to explain the following values

5We also consider the quantities k, and m, although we shall not mention them explic-
itly for clarity, understood their values remain constant.
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Figure 11.9: Oscillator ST–structure.

of x.
We could deduce from this that there would exist internal aspects of

the system which would remain hidden from out observation. They would
disappear if we would consider an internal quantity which would reflect in
some way the inertia of the mass or its momentum. We could well consider
the speed of the movement, ẋ, or its acceleration, ẍ. We could then arrive
to a set of time–invariant relations between its quantities, which would hold
in the region of operation of the oscillator:

m · ẍ + k · x = 0
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Figure 11.10: ST–structure of a Particular Oscillation.

xc < x < −xc

In conclusion, the state of the system would be given by (x1, x�
2), where

x�
2 would stand for our chosen internal variable. Continuing the analysis from

this point, we would arrive to a ST–structure which would be analogous to
the above, in terms of x2. In fact, there would always exist a transformation
allowing to represent the system in terms of (x1, x�

2) or (x1, x2) indistinctively.

11.1.6 Classification of Systems

The concepts of quantity and structure introduced in the previous sections
may lead to a classification of systems. We shall consider the short classifi-
cation of systems illustrated in figure 11.1.6.

Let us briefly explain the categories of systems. We have seen that quan-
tities whose values are measurable are physical quantities, and the rest are
abstract. Accordingly, systems formed by physical quantities are physical
and the rest are abstract. If we focus on physical systems, we may distin-
guish two kinds. If quantities really exist, the system is real. If the quantities
are only assumed, as in the case of systems which are modelled or imagined,
the system is conceptual.

As to the number of quantities and structure a system has, we may dis-
tinguish two cases. First, that the system has a finite number of quantities
and a finite structure. In this case, it would be a bounded system. Otherwise
it would be an unbounded system. We may see that real physical systems are
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Systems

�
physical

� real → (∗)

conceptual

� bounded → (∗)

unbounded → (∗)

abstract

� bounded → (∗)

unbounded → (∗)

(∗)
� controlled

neutral

Figure 11.11: Short classification of systems, adapted from [37].

always bounded, while conceptual or abstract systems may be unbounded.

Finally, if we analyse the quantities of a system, we may find that they
can be of two kinds. First, they can adopt values independently from the sys-
tem, given by the environment. In this case, they are independent quantities.
Second, their values might depend on the values of other system quanti-
ties, and they are called dependent quantities. When analysing real systems,
discriminating between dependent and independent quantities is frequently
impossible in practice. However, if dependent and independent quantities
are known to the observer, the system is a controlled system. Otherwise it is
a neutral system.
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11.2 The General Cognitive System

In this section we present a theoretical framework based upon the GST for
the concrete domain of cognitive systems, which will be the systems to be
analysed in this work. We call call this framework the General Cognitive
System.

11.2.1 Cognitive Subsystem

We may assume that, in the most general case, a cognitive autonomous
system operation can be analysed at two levels. The first, which we may
call physical, answers to physical laws: gravity, magnetism, etc. Indeed, an
important part of the system’s operation is its physical action on the envi-
ronment; for example a robot picking up objects, or a mobile robot exploring
new territory. This kind of operation can be observed by measuring a certain
amount of quantities, representing speed, temperature, force, etc. These are
the physical quantities we referred in 11.1.

The other kind of operation in a general autonomous system is concep-
tual. A conceptual quantity is a specific resource of the system whose state
represents the state of a different part of the universe [37]. For example,
the area of memory used for an integer may represent the speed of a robotic
mobile system, encoded in the state of its own bits.

We shall call the part of the system that performs conceptual operation
the cognitive subsystem. The cognitive architectures are cognitive subsys-
tems. Of course they are also systems, but when we analyse the whole
system formed by the cognitive and the physical parts, we will use the term
cognitive subsystem. The cognitive subsystem has the capacity to operate
with conceptual quantities, using them for representing objects in their envi-
ronment, for simulating the effect of its own action over them, or for inferring
new objects among other examples.

We shall differentiate the abstract quantities from other conceptual quan-
tities. Abstract quantities are not measurable and cannot relate to actual
physical quantities. Between the rest of conceptual quantities there will be
some that relate to real current physical quantities, we shall say they are
instantiated quantities, and those that are not but could eventually be; they
are potentially instantiated quantities.
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Figure 11.12: Grounding involves sensing, perception, grounding* and action

Grounding and embodiment

The relation between a conceptual quantity and its physical counterpart di-
rectly relates to the symbol grounding problem as analysed by [30]. Leaving
out of the discussion the hard problem of meaning, we shall define the rela-
tion between the conceptual quantity (the virtual landscape) and the physical
one it refers to (the actual landscape in the world) as the grounding. A con-
ceptual quantity may refer to a physical quantity of the environment or a
physical quantity of the system.

The bidirectional nature of the relation is represented by the sensing-
perception and grounding-action cycle. Sensing relates a physical quantity
in the environment with a physical quantity in the system. Perception relates
the physical quantity with a conceptual quantity in the cognitive subsystem.
The physical quantity may be in the environment, in which case we shall talk
about exteroception, or in the own system, then we shall talk about propi-
oception. We represent perception as a link between a physical quantity in
the physical subsystem and a quantity in the cognitive subsystem because in
any case the initial quantity must be mapped to one in the same substrate
–embodiment– that the cognitive subsystem, that is the physical part of the
system. This mapping is the sensing.
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Grounding*6 is the process of making physical quantities correspond to
their conceptual counterparts. The other way round grounding* relates a
conceptual quantity in the cognitive subsystem with a physical quantity in
the system, while action relates the quantity in the system with the sensed
physical quantity in the environment.

Let’s take the example from a mobile robotics application. The speed of
the robot (physical quantity of the coupling system-environment) is sensed
in the signal from the encoder (physical quantity in the system) and through
perception it is conceptualised in the conceptual quantity speed of the cogni-
tive subsystem. This conceptual quantity may be manipulated in cognitive
processes, such as planning, that result in an increase of the value of the
quantity. The conceptual quantity is grounded through the quantity voltage
applied to the motors, whose action finally results in an increase of the ini-
tial physical quantity speed. Only instantiated conceptual quantities can be
updated through perception and and/or grounded.

SYSTEM

COGNITIVE SUBSYSTEM

conceptual 

quantities

physical 

quantities

grounding

embodiment

Figure 11.13: Grounding and embodiment

We call embodiment of a conceptual quantity to its physicalisation, that is
to say the relation between the conceptual quantity and the physical quantity
that supports it [41], in which it is embodied, i.e. in our example the relation
between the robot speed and the memory bits used to represent it.

6This grounding is intimately related to the previous grounding, but we use them with
a slight difference. Grounding refers to the whole relation between conceptual and physical
quantity, whereas grounding* refers to it in the direction from conceptual to physical
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Figure 11.14: Example of grounding and embodiment concepts in a mobile
robotics application

11.2.2 Objectives

In this section, we shall try to analyse objectives in cognitive systems. We
may understand an objective as a state of the system, of the environment
or of both, to which the system tends as a result of its behaviour.7 It can
be complete if it specifies all the aspects of the system and the environment,
or partial if it refers only to some aspects, leaving the rest unspecified. A
partial objective thus refers to a class of states.

As we mentioned previously, the state of the system is the value of all
its quantities at a particular instant of time. On the other side, the state
of the environment represents its situation relative to the system. In other
words, it must represent a characterization of the environment according to
the parameters which are observed by the system. These are the quantities
of the coupling system-environment. The state of the environment relative
to the system would therefore equal to the values of the quantities of the
coupling. We shall call this notion the strict state of the environment.

There exists a slight point to be specified with respect to this. We may
assume that the system perception of its environment will not be limited to
the quantities of the coupling. Upon them, the system may build developed,
conceptual quantities. This makes that, in reality, the state of the environ-
ment, from the point of view of the system, will not only consist of the values
of the coupling quantities, but also of its conceptual representations of it. We

7Note that we refer to an objective of the system. We shall not refer to the objective of
the designer except stated explicitly. The text develops the notion of objective to which
the system converges and with which the system may operate.
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shall call this the subjective state of the environment. Unless stated other-
wise, we shall understand state of the environment in this sense.

An objective is therefore a desired sate of the pair (system, environment).

It must be observed that an objective is conceptual because it refers to
a desired state, which does not exist in reality. We shall see in the following
sections how an objective may appear in the actual, physical operation of
the system.

Structure of Objectives

Systems of a certain degree of complexity may operate concurrently at dif-
ferent levels of abstraction, showing a collection of objectives at each level.
Usually, abstract objectives cannot be realized directly, and must be decom-
posed into a collection of more particular ones, and these into new ones in
turn. This decomposition gives rise to a hierarchy of objectives as represented
in 11.15(a well-known paradigm in artificial architectures).
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own element and in the rest of the system?

We may realize there is a straightforward answer: unified perception is given by the UC and ST-
structures, which stand for the restrictions to elements and their evolution. However, although this answer
is correct, in order to design knowledge-based systems we need to know how the organizational descrip-
tion of systems (elements, couplings, states and transitions) is related to their operational and cognitive
aspects: objectives, knowledge, inference capabilities, etc.

Systems of a certain degree of complexity may operate concurrently at different levels of abstraction,
showing a collection of objectives at each level. Usually, abstract objectives cannot be realized directly,
and must be decomposed into a collection of more particular ones, and these into new ones in turn. This
decomposition gives rise to a hierarchy of objectives as represented in figure 2 (a well-known paradigm in
artificial architectures).
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Figure 2. Representation of a hierarchy of objectives. Objectives are represented by circles. Some dependences have been represented

by lines. There may exist generality/specificity dependences like (1). Between objectives derived from a same parent objective it is

likely that there exist dependences of many kinds, and most probably regarding synchronization (2). There may also exist dependences

with other objectives of the same level (3).

Thus, the objectives contained in a given branch of the hierarchy follow a relation of generality/specificity,
which implies coherence between them. On the other hand, there may exist three fundamental differences
between any two objectives of the hierarchy. First, they may belong to different levels of abstraction
(generality/specificity relation). Second, they may differ in their content: in the finality [vB69] they actually
stand for. Third, they might differ in their dependences within the hierarchy: belong to different branches.

Let us deduce some major implications of these differences. Differences in level of abstraction usually
equal to different temporal horizons [Alb91]: a more abstract objective tends to take more time to be
achieved than a more specific one. Differences in content may imply that they require different, specific
processes and resources to be achieved, which cannot be interchanged. Finally, difference in dependences
implies a degree in mutual independence: the farther one objective is from another in the hierarchy, the
less the achieving of one affects in the achieving of the other.

We shall generically call the hierarchy of objectives of a system its objective structure. At a certain
instant in time, system resources are divided in achieving all objectives of the structure. In other words,
if we were to analyze the processes taking place in the system at that instant, we would also observe
that each process is dedicated to a particular objective. Thus, there exists a correspondence between the

Figure 11.15: Representation of a hierarchy of objectives. Objectives are rep-
resented by circles. Some dependences have been represented by lines. There
may exist generality/specificity dependences like (1). Between objectives de-
rived from a same parent objective it is likely that there exist dependences of
many kinds, and most probably regarding synchronization (2). There may
also exist dependences with other objectives of the same level (3).

Thus, the objectives contained in a given branch of the hierarchy follow a
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relation of generality/specificity, which implies coherence between them. On
the other hand, there may exist three fundamental differences between any
two objectives of the hierarchy. First, they may belong to different levels of
abstraction (generality/specificity relation). Second, they may differ in their
content: in the finality they actually stand for. Third, they might differ in
their dependences within the hierarchy: belong to different branches. Let us
deduce some major implications of these differences. Differences in level of
abstraction usually equal to different temporal horizons [?]: a more abstract
objective tends to take more time to be achieved than a more specific one.
Differences in content may imply that they require different, specific pro-
cesses and resources to be achieved, which cannot be interchanged. Finally,
difference in dependences implies a degree in mutual independence: the far-
ther one objective is from another in the hierarchy, the less the achieving
of one affects in the achieving of the other. We shall generically call the
hierarchy of objectives of a system its objective structure.

At a certain instant in time, system resources are divided in achieving
all objectives of the structure. In other words, if we were to analyse the
processes taking place in the system at that instant, we would also observe
that each process is dedicated to a particular objective. Thus, there exists
a correspondence between the elements and the objective structure of a sys-
tem: an element stands for the set of processes and resources devoted to
achieving a particular objective of the structure. In summary, the UC and
ST-structures of a system reflect its objective structure. In other words, the
elements of the system and their couplings must follow equivalent coherence
relations to those that hold between objectives. The system achieves unified
behaviour from the individual element-behaviours because they are bound to
the generality/specificity relations between objectives. The behaviour of an
element is the result of combining afferent, efferent and deliberative tasks.

Directiveness

A cognitive system converges to its root objectives by realising lower ones,
which are simpler or of shorter term. The behaviour of the system tends to
progressively realise all the objectives in the structure. It follows the sequence
derived from the dependences between objectives. In this way, the objective
structure actually defines the trend in the evolution of the system, which
constitutes its directiveness. We may distinguish two types of directiveness.

Structural Directiveness . The patterns of behaviour of a system, derived
from a certain organisation. Structural directiveness depends on the
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system and the environment. The objective is therefore implicit in the
system.

Purposive Directiveness . Capacity of the system to change its organi-
sation, and therefore its behaviour, in order to establish, maintain or
improve convergent evolution by explicit consideration of its objective,
self and environment.

Objectives and Organisation

As we mentioned previously, the behaviour of a system will direct its evo-
lution toward an objective. In artificial systems, the objective is set by the
designer. In natural systems it results from evolution.
The objective drives the composition of the system’s properties, which leads
to a corresponding behaviour. So in can therefore be established the following
relation of causality for autonomous systems:

objective → organisation → behaviour

We may realize that root objectives constitute a part of the definition of
the system itself. In artificial systems they stand for the primary objectives
of the designer. They underlie the longest time-scope of operation in the
system and they establish the highest level of abstraction. They are a con-
stitutional part of the system, as other fundamental properties, all of which
form its real structure:

root objectives → real structure → permanent behaviour

As the root objectives, real structure and permanent behaviour are con-
stant in time by definition; we may deduce that the adaptivity of the system
relies on the rest of objectives, the hypothetic structure, the program, and
correspondingly, the relatively permanent and temporary behaviours. We
shall call these objectives intermediate objectives. Local objectives are the
intermediate objectives of shortest scope. Intermediate and local objectives
correspond to the hypothetic structure and to the program of the system re-
spectively, as the root objectives correspond to the real structure:

intermediate objectives → hypothetic structure → relatively p. behaviour
local objectives → program → temporary behaviour
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Figure 11.16: Correspondence between the hierarchy of objectives and system
organisation

Categories of Objectives

According to their morphology we can also categorise the objectives. We
could distinguish between implicit and explicit objectives. An implicit ob-
jective is an objective which has no explicit representation in the system. It
is very usual that the root objective of artificial systems (the general purpose
of the system from the designer’s point of view) is embedded in their real
structure. Otherwise the objective is explicit.

Another useful distinction between objectives is that that adopts the com-
monly used terms of target, setpoint or reference and constraint. When using
target we define an objective as a desired final state (S, E), whereas by spec-
ifying a set of constraints we restrict the states (S, E) in time and/or space
to a certain subset.

We shall say that an objective is a target if it is defined as one, imposing
no constraints on the organisation or the dynamics of the system associated
to the objective.

Now we shall categorised the objectives in function of their dynamical
state. As we have mentioned, the activity of an objective is the period dur-
ing which the system organisation is directed toward it. In other words, the
organisation is configured corresponding to the objective, and causes a coher-
ent behaviour. The objective is therefore mapped onto the system embedded
in a real scenario of operation. In this case, the objective is instantiated,



90 CHAPTER 11. THEORETICAL FRAMEWORK

S0

S1

S2

S3 S4

S5

S6

S0

S1

S2

S3 S4

S5

S6

a) b)

Figure 11.17: Objectives can be a) a certain state in the system’s ST-
structure or b) a subprogram of it

for the conceptual, desired state it stands for corresponds to real quantities
of the system. Accordingly, we say the objective exists in real form. When
we want to refer to the state in which an objective finds itself, we shall use
instantiated. When we want to refer to the dynamic aspect of being instan-
tiated, we shall say it is activated, i.e. : its having an activity.

An objective, however, may eventually be inactive, in other words, not
determining the behaviour of the system at present. In this case we shall
say it is in abstract form. Objectives in abstract form are part of the system
knowledge. They may be generated by problem solving, planning or other
processes in the system, or they may be set by the designer in artificial
systems.

Objective Dynamics

The objective structure of a system exhibits a certain dynamics as a result of
the achievement of its intermediate and local objectives, and the generation
of new ones.

The dynamic aspects of the life of an objective are given by four types of
phases:

Generation Refers to the process by which an objective is generated and
appears in the hierarchy as a result of the decomposition of a higher
one or is derivered by another one at its same level.

Activation Activation of an objective stands for the process of instantiating
an objective which exists in abstract form.

Activity The activity of the objective is the evolution of the system during
the time in which the objective is instantiated.
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Deactivation or conclusion Eventually, an objective may be reached. We
shall say that in this case, its activity concludes. However, a second
objective might be instantiated before the conclusion of the first, over-
riding its organisation. In this case, the first objective is deactivated.

11.2.3 Autonomy of a Cognitive System

Uncertainty will affect the system in the form of perturbations. The system’s
program has a certain capacity to compensate these perturbations, mainly if
they are intensive. We will call performance to these capacities. Performance
is therefore the effectiveness of the temporary behaviour of the system. How-
ever, performance may be not sufficient to cope with certain perturbations,
typically the qualitative ones. In this case a program failure happens.

The consequences of a program failure may affect the hypothetic struc-
ture of the system. At this level, mechanisms of purposive directiveness may
activate to try reconfiguring the system to correct its behaviour. This may
consist of modifying algorithms or reconfigure a certain part of the structure
of objectives. We shall call this capacity of the system adaptivity. Sys-
tem’s adaptivity can be structural, in the case it is a function of the current
functional structure, or purposive, in the case it develops dynamically. In
the second case it implies conceptual operation. It may happens that sys-
tem’s adaptivity could not compensate the program’s failure. We shall call
this situation structural failure. Structural failure can propagate to the real
structure of the system, breaking partially or totally system’s cohesion.

For example, in a varying parameters PID, while the plant remains in
a certain region the controller parameters do not change but the control
signal do, according to the error. That corresponds to the program and
performance of the system. By contrast, when the plant enters a different
region of operation the PID parameters change accordingly, this stands for
the hypothetic structure of the system and its adaptivity.
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Chapter 12

General Principles for
Cognitive Controllers

In this chapter we will present the principles proposed in the framework
of the ASys project to guide the design of integrated cognitive control sys-
tems, and that therefore should be addressed by any cognitive architecture
intended with that purpose. These principles, biologically inspired by the
old metaphor –or not so metaphor but an actual functional definition– of
the brain-mind pair as the controller-control laws of the body –the plant–,
provides a base characterisation of cognitive or intelligent control.

12.1 Model-based cognition

Principle 1: Model-based cognition — A system is said to be cognitive
if it exploits models of other systems in their interaction with them.

This principle in practice equates knowlegde with models, bypassing the
problems derived from the conventional epistemological interpretation of
knowledge as justified true belief [28] and embracing a Dretskean interpre-
tation where justification and truth are precisely defined in terms of a strict
modelling relation [50]. Obviously, this principle takes us to the broadly de-
bated interpretation of cognition as centered around representation [11], but
with a tint; that of the predictive and postdictive capabilities derived from
the execution of such a model.

In what follows we will use the terminology presented in the previous
chapter but using the term cognitive system instead of subsystem since in
the following dissertation we will only care about the conceptual part. We
will use the term object instead of GST element for the system or part of
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the environment – environment of the cognitive system, which includes the
physical subsystem–, even when in some cases it may be also cognitive, be-
cause the term element has some connotations in other fields which may lead
to confusion. But what we call now object corresponds exactly to the GST
definition of element.

COGNITIVE SYSTEM

OBJECT

Object model

Figure 12.1: The cognitive relations of a system with an object are mediated
by a model of the object. The relation between the model and the actual
object is the grounding as defined in page 83.

The idea that the mind uses models is not a new theory. The model-
based theory of mind can be traced back in many disciplines and the topic
of mental models have been a classic approach to the study of mind [18, 27]
but this has just had an aura of methaphorical argumentation [34] because of
the lack of formalisation of the concept of model and the less than rigorous
approach to the study of its use in the generation of mental activity.

Closer approaches are for example the emulation theory of representation
of Grush [29] or the model-based sensory-motor integration theory of Wolpert
[71]. Grush proposed the similar idea that the brain represents external-to-
mind things, such as the body and the environment, by constructing, main-
taining, and using models of them. Wolpert addresses the hypothesis that
the central nervous system internally models and simulates the dynamic be-
haviour of the motor system in planning, control, and learning.

We think that we can go beyond using the concept of model-based-mind as
metaphor or as de facto contingent realisations found in biological brains to
the more strong claim that cognitive controllers are necessarily model-based.
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12.1.1 On models

This definition of cognition as model-based behavior many sound too strict to
be of general applicability; in particular it seems not fitting simple cognitive
processes (e.g. it seems that we can have a stimulus input without having
a model of it). However, if we carefully analise these processes we will find
isomorphisms between information structures in the system’s processes –e.g.
a sense– and the external reality –the sensed– that are necessary for the pro-
cess to be succesful.

These information structures may be explicit and directly identifiable
in their isomorphisms or may be extremely difficult to tell apart. Models
will have many forms and in many cases they may even be fully integrated
–collapsed– into the very mechanisms that exploit them. The model infor-
mation in this case is captured in the very structure of the cognitive process.
Reading an effective cognitive system tells us a lot about its surounding re-
ality.

The discussion of what is a proper charaterisation of the concept of model
is also very old and plenty of clever insights as that one of George Box: ”Es-
sentially, all models are wrong but some are useful” [9]. It is this model
usefulness what gives adaptive value to cognition as demosntrated by Co-
nant [17].

There are plenty of references on modelling theory, mostly centered in the
domain of simulation [14, 72] but it is more relevant for the vision defended
here the perspective from the domains of systems theory [38] and theoretical
biology [52, 51].

This last gives us a definition of model in terms of a modelling relation
that fits the perspective defended here: a system A is in a modelling relation
with another system B —i.e. is a model of it— if the entailments in model A
can be mapped to entailments in model B. In the case of cognitive systems,
model A will be abstract and stored in the mind or the body of the cognitive
agent and system B will be part of its surrounding reality.

We must bear in mind, however, that models may vary widey in terms of
purpose, detail, completitude, implementation, etc. A model will represent
only those object traits that are relevant for the purpose of the model and
this representation may be not only not explicit, but fully fused with the
model exploitation mechanism.
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12.1.2 Relations with other traits

Principle 1 grounds some common conceptions about cognitive systems; ob-
viously the most important is the question of representation. A cognitive
system —by definition of cognition— necessarily represents other systems.
Even more, these representations must have deep isomorphisms with the
represented objects so the cognitive system can exploit formal entailments
in its models to compute entailments in the modelled object in order to
maximise the utility of the interaction (more on this in section 12.2). Para-
phrasing what Conant and Ashby clearly stated [17] –every good regulator
must contain a model of the system it is controlling– we can say that every
well performing cognitive system must contain a model of the objects it is
interacting with.

Many other core issues of cognitive systems are addressed by Principle 1.
Two quite fashionable these days are the questions of situatedness –cognition
is necessarily interactive with an external world– and embodiment –the neces-
sary separation of the agent body from the rest as defined by the interaction
boundary–. Both are duly addressed by the modeling perspective of Principle
1 even when they are not as necessarily crisp as they may appear to roboti-
cists because the model can obviosly represent uncertainty and vagueness,
hence being able to handle even blurred bodies and fuzzy situations. Other
so-called cognitive traits are left out of this picture of cognitive systems.

12.1.3 On model generation

Model-based –cognitive– systems need not necessarily be learning systems –
even while learning will be a very common procedure for model generation. A
cognitive system may operate using a static model –coming from any source–
as long as it is considered valid. i.e. as long as the modeling relation with
the external object still holds.

Obviously, from the consideration of how the cognitive system becomes
cognitive or maintains its cognitive capability learning becomes crucial. Some-
how the models must be put there, in the mind of the cognitive system. In
general –not just in the case of biosystems– the core infrastructures for model
construction fall in three categories:

Built-ins: In the sense described by Conant and Ashby [17], our feeding,
homeostatic and kinestetic mechanisms contain models of the suround-
ing reality (e.g. genes codifying chemical receptors for the nose).
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Learned: The very subject matter of learning from experience.

Cultural: The well known topic of memetics [20, 8] or –more visually shocking–
of Trinity “learning” helicopter piloting expertise in Wachowskys’ Ma-
trix. 1

The learning and cultural mechanisms have the extremely interesting
property of being open ended. In particular, cultural model transmision is
a form of extended learning, where the cognitive system downloads models
learned by others hence reaching levels of model complexity and perfection
that are impossible for an isolated agent2.

In biological systems, the substrate for learning is mostly neural tissue.
Neural networks are universal approximators that can be tuned to model
any concrete object or objects+relations set. This property of universal ap-
proximation combined with the potential for unsupervised learning make the
neural soup a perfect candidate for model boostraping and continuous tun-
ing. The neural net is an universal approximator; the neural tissue organised
as brain is an universal modeller.

These are also the properties that are sought in the field of artificial neural
networks. It is not necessary to recall here the ample capacities that neural
networks –both artificial and natural– have shown concerning model learn-
ing. We may wonder to what extent model learning of an external reality
can be equated to the advances in modeling external realities demonstrated
in the so called hard-sciences (deep, first principles models).

What is philosophically interesting of this process of scientific model con-
struction is the fact that reality seems to have a mathematical-relational
stucture that enables the distillation of progressively precise models in closed
analytical forms [70].

We may think that culturally learnt first principles models3 are better
than neural network approximative modelling4; there are cases of exact con-
vergence of both modelling approaches but there are also cases where the
mathematical shape of the principles limits their applicability to certain
classes of systems.

1Supervised learning may be considered an hybrid of cultural and learned processes.
2Indeed this is, plainly, the phenomenon of science.
3Only geniuses do incorporate first principles models by autonomous learning.
4A similar problem to that of having symbolic representations in neural tissue.
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For example, in the field of model creation for control purposes, artificial
neural networks have been compared favourably, in certain settings, with first
principles models in the implementation of nonlinear multivariable predictive
control [31]. This neural network approach uses a recurrent Elman network
for capturing the plant’s dynamics, being the learning stage implemented on-
line using a modified version of the back-propagation through time algorithm
[23, 54].

All this analysis takes us to the formulation of a second principle of cognitive
system construction:

Principle 2: Model isomorphism — An embodied, situated, cognitive
system is as good as its internalised models are.

Model quality is measured in terms of some definable isomorphism with
the modelled system as established by the modelling relation.

12.2 Reactive vs Anticipatory Control

Many control mechanisms follow the well known error-feedback paradigm we
already presented in 44. This control structure is so simple and robust that
almost all control loops are based on this approach. The strategy is simple
and extremely effective [69]: measure the difference between what we want
and what we have and make corrections based on this difference (see Figure
12.2).

PlantController

Disturbance

OutputReference

+

!

Error Control

Figure 12.2: Feedback controllers measure the difference (error) between
what we want (reference)and what we have (output) and make corrections
(control) based on this difference.

These controllers are very effective but have a serious drawback: they
are always behind the plant, i.e. they cannot make the plant strictly follow
a reference signal without a delay (except for special plants in special cir-
cumstances). These controllers just act as reaction to plant output diverting
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from what is desired (errors); so they will wait to act until output error is
significant.

In order to have the plant in a certain state at a defined time, we need
other, more powerful approaches that can anticipate error and prevent it.
Due to the inherent dynamics of the plant, the only possibility of acting to
make it reach a final state sf at tf from an intial state si at ti is to act at ta
before tf .

This kind of control is anticipatory in this strict sense of (ta < tf )5. The
determination of the action cannot come from the final state (as with classical
error feedback) because of anticipation and we need an estimate –prediction–
of this state ŝf at time ta.

These two alternative approaches were described by Conant [16] as error-
controlled regulation and cause-controlled regulation. The advange of this
second approach is that in certain conditions, it is often possible for the
regulation to be completely succesful at maintaining the proper outcome.
Needless to say is that due to the non-identity between model and reality,
this last one may depart from what the model says. In these conditions only
error-driven control will be able to eliminate the error. This is the reason
why, in real industrial practice, model-predictive controllers are implemented
as mixed model-driven and error-driven controllers.

The previous analysis take us into the formulation of another principle:

Principle 3: Anticipatory behavior — Except in degenerate cases, max-
imal timely performance can only be achieved using predictive models.

These predictive models can be explicit or implicit in the proper machin-
ery of the action generation mechanism [13]. Obviously the degree to which
a particular part of reality can be included in a model will depend on the
possibility of establishing the adequate mappings from/to reality to/from
model and the isomorphims between entailments at the model level and at
the reality level (according to a particular model exploitation policy). The
problems associted to inferred model quality have been widely studied in re-
lation with properties of statistical modelling, where we seek a good model
to approximate the effects or factors supported by the empirical data in the
recognition that the model cannot fully capture reality [12]. This is also the

5This could be seen as acausal because the cause of the action –final cause in aristotelian
sense– is the final state sf , that is a future state.
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world of systems identification but in this case, the target model typically
belongs to a very reduced and precise class of models [42, 49].

12.3 Integrated Cognitive Control

Reactive and anticipatory control are the core building blocks of complex
controllers. Reactive controllers are simpler and more easily tuneable. These
are the reasons for being the most used both in biological systems (they are
easily evolvable) and technical systems (they are easier to design and imple-
ment).

Complex controllers organise control loops in hierarchical/heterarchical
arrangements that span several dimensions: temporal, knowledge, abstrac-
tion, function, paradigm, etc. [55]. These organisational aspects lead to the
functional differences offered by the different achitectures.

In the performance of any task by an intelligent agent there are three
aspects of relevance: the task itself, the agent performing the task and the
environment where the task is being performed [56]. In the case of natural
systems the separation between task and agent is not easily stated, but in
the case of technical systems this separation is clearer: artificial systems are
made on purpose and the task always comes from oustide of them, it comes
from the owner.

The knowledge content of the models in highly autonomous cognitive
controllers should include the three aspects: system, task and environment.
Depending on the situation in the control hierarchy, models may refer to
particular subsets of these aspects (e.g. models used in intelligent sensors do
address only a limited part of the system environment; just environmental
factors surrounding the sensor).

System cohesion may be threatened in evolutionary terms and its preser-
vation becomes a critical integrational requirement. The problem of model
coherence across the different subsystems in a complex control hierarchy is a
critical aspect that is gaining increased relevance due to the new component-
based strategies for system construction. In the case of biological systems and
unified engineering artificial systems the core ontology –whether explicit or
assumed– used in the construction of the different elements is the same. But,
in systems agregated from components coming from different fabrication pro-
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cesses, ontology mismatches produce undesirable emergent phenomena that
lead to faults and even loss of system viability. This is clear in biological
systems (e.g. immunity-related phenomena) but is just becoming clear in
complex technical systems during recent times [33].

This analysis lead us to formulate an additional principle of complex cognitive
systems:

Principle 4: Unified cognitive action generation — Generating ac-
tion based on an unified model of task, environment and self is the way for
performance maximisation.
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Figure 12.3: Complex cognitive systems in integrated control architectures
need to exploit models in the performance of tasks at different levels of ab-
straction; from the immediate reaction to environment changes to the strate-
gic decision making relevant for the long term performance of the system.

Modeling the task is, in general, the easiest part6. This has been one of
the traditional focus points of classic AI and its problem-solving approach.

Modeling the environment in control systems has been generally done up
to the extent of addressing the interference it produces in the performance

6But representing the task in the internalised model can be extremely complex when
task specification comes in natural language.
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of the task. This can be as simple as statistically modeling an interfering
disturbance in SISO controllers (See Figure 12.2) or as complex as simulta-
neous localisation and mapping in autonomous mobile robotics.

The question of modelling the system is trickier and will be the focus of
15. Let’s say that in conventional analyses of control systems these realisa-
tional aspects are comonly neglected or reduced to considerations concerning
design constraints derived from implementation limitations. The issue of em-
bedding system models –i.e. of the system knowing about its own body– has
been raised in many contexts but got wider audience in relation with robotics
embodiment considerations [15].

12.4 The Perceiving Agent

As deeply analised by López [43] there are strong differences between sensing
and perceiving, related to the expectation and model-driveness of this last
one.

The perceptual process is structured as a potentially complex pipeline of
two classes of processes that we could describe as sensor-driven and model-
driven. The perceptual pipeline can affect the perceiving system in two
ways: implicitly, through changes in operational states of other subsystems;
and explicitly through cognitive integration of what has been perceived into
integrated representations.

This unified understanding of perception as a model-driven process [44]
leads to the introduction of a new principle:

Principle 5: Model-driven perception — Perception is the continuous
update of the integrated models used by the agent in a model-based cognitive
control architecture by means of real-time sensorial information.

This principle implies that the result of perception is not a scattered se-
ries of independent percepts, but these percepts fully incoprorated into an
integrated model. This means that it is possible to sense without actually
perceiving; e.g. if the cognitive –i.e. model-driven– sensory processing fails
in the integration.

To be integrable, the percept must follow some rules that are captured
both in the mechanics of cognitive perception and in the set of referents used



12.5. DEFINING AWARENESS 103

OBJECT

COGNITIVE SYSTEM

Object model

Figure 12.4: System perception implies the continuous update of the models
that the system is employing in the generation of behavior.

in the perception process. The mechanics typically will form part of the per-
manent structure of the agent while some of the referents may be part of its
program (see [37] for details on the duality structure/program).

Even more, the perception mechanism is not restricted to process in-
formation coming from the environment of the perceiving system but can
exploit also information coming from the inside of the system. Here authors
will typically talk about two classes of preception, propioception –the sens-
ing of the body– and metaperception –the sensing of the mind– but both are,
senso stricto, the same class of perceptual processes. This unified perspec-
tive implies that for explicit perception to happen in the inner environment,
there must be a model where percepts are to be integrated. These models
obviously constitute the very core of self.

12.5 Defining awareness

From the analysis of integrated cognitive controllers given in the previous sec-
tions we can make a try into the formalisation of some consciousness aspects.
We will make a distinction between awareness and consciousness, reserving
the C-word for systems self-awareness.
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Principle 6: System awareness — A system is aware if it is continuously
perceiving and generating meaning from the countinuously updated models.

The term meaning was introduced in this principle to define awareness
and this looks-like eluding the core definitional problem. However, the word
meaning implies that the main difference between perception and awareness
is the addition to the perceptual mechanics of a certain value system in the
global system process. So we can say that awareness implies the perception
of value to the system from its sensory flow.

The value system is established upon the objectives of the system. It
evaluates, computes a fitness of the perceptions according to its directiveness
towards the system objectives. As explained in the previous chapter, objec-
tives may be implicit or explicit. Since the core objectives define somehow
the system, if the system operates with an explicit representation of them
that means a certain self-modelling, and thus escape the range of awareness
to enter that of consciousness. We thus will reserve the term awareness for
the generation of implicit value in the model updating.

OBJECT

COGNITIVE SYSTEM

Object model

Meaning Engine/

Evaluator

Meaning/
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Figure 12.5: System awareness implies the generation of value from model-
update according to system’s objectives

The updated integrated model produced by perception is evaluated in
terms of a value system not only in the present state of affairs but in the po-
tential consequences derived from this state of affairs. Awareness implies the
partitioning of predicted futures and postdicted pasts by a value function.
This partitioning we call meaning of the update to the model. In this context
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of interpretation of the term meaning, we conclude that only pieces of infor-
mation that are model-integrable can have meaning, because for others, we
cannot compute futures nor pasts, less their value.

System perception implies the continuous update of the models that the
system is employing in the generation of behavior; but this continuous up-
date is not just keeping in mind an updated picture of the status of part
of the environment –like a photograph– but continuously restructuring and
retuning the dynamical model of the object used in the action generation
process.

System awareness requires the additional steps of automatically predict
and evaluate. While many researchers claim for a –necessary– sensory-motor
profile of awareness and consciousness, action is not necessary for the defini-
tion of awareness; but obviously when the models are used for action selection
and built by a process of sensory-motor interaction, action becomes critical
for the awareness architecture; but models can be built using other methods
(see Section 12.1.3) and this will be more manifest in artificial systems.

12.6 Attention

When engineering a system there always is, no matter what kind of system
nor the type of task it is intended for, a common constraint that must be
taken into account in all the stages, from requirements definition to final
implementation and tests passing through design. This common constraint
is the limited resources we have to build up the system with, and as a con-
sequence, the limited resources the system has.

We may distinguish two classes of limited resources: limited physical re-
sources and limited cognitive resources, not because they are different in their
very core nature (in the end they are both physical), but because of the part
of the system they support: the physicality of the system or the cognitive
subsystem.

Let’s have a glimpse at each of these two limitations, starting with the
limited physical resources. Cognitive systems are intended to operate in com-
plex environments, eventually the real world, in its broader and fine detailed
sense. We will take the example of a mobile robotic system. There, the real
world environment potentially contains an infinite number of objects and
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events –rocks, trees, roads, birds, grass, buildings– and in a practically infi-
nite regression of detail. However, the system will have in any case a limited
set of sensor, that can sense only certain kind of phenomena (i.e. reflections
of ultrasounds in a surface) and with a limited range –so that it can sense
only a part of the environment–, with a limited spatial scope –thus covering
a small portion of the phenomena present in the environment at a time– and
with limited precision –hence limited level of detail to be sensed–. We shall
call this the sensory limitation constraint. There is a core relation between
the range, scope and precision elements of the sensory limitation constraint
because of the very deep nature of most sensors. It can be considered that
for a given sensor there is function that maps a maximum level of detail to
each point in a scope-range map, typically associating greater levels of detail
to points near that one more far away from the limits of the sensor range
and scope, and lower levels of detail to points near the limits 7.

It seems clear that, once build up, the system has no way to eliminate
the sensory limitation constraint, but possessing scalability and integration
properties to integrate new sensors if given. However, the system may be able
to mitigate the limitation, for example if it could direct its sensory resources
to those areas in the environment of particular interest, so as to obtain more
information through perception to improve its models of the environment.
This is the first type of attentional mechanisms a system may have, and we
shall define it as the ability of a system to allocate physical resources to max-
imise model updating.

The interest of the system in a portion of the perceptive environment
could be triggered by a deliberative inner process –top-down mechanism– or
directly by a certain pattern in the sensory input –bottom-up mechanism–
[65]. For example, attentional mechanisms are triggered by strong and unex-
pected inputs, such as a burst; or they can also be driven by inner top-down
control related to a required goal, i.e. searching for a friend in a crowd.

We may turn now to the problem of limited computational resources. The
limiting factor of data storage has these days became negligible in relation
with other factors, since nowadays storage media provides almost unlimited
space for example to store an almost unlimited quantity of models in the sys-
tem without much physical space waste. However, the amount of modelling
instantly instantiated, that is in the working memory, is much more con-
strained by the RAM of today’s CPUs. By modelling here we are referring

7The human retina with the fovea is a clear example of this
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models quantity, the level of detail of them, and the number of deliberative
processes exploiting them. So there is need for mechanisms in the system
which will decide which models and with which detail are worthy running at
each instant and which deliberative processes will be exploiting them. Let’s
go back to our mobile robotic system example. One of the possible tasks
of the robot may involve traversing a room with obstacles. Once the path
planning algorithm initiated, an internal alarm could warn the system of low
battery. It could be the case that the current process could not coexist in the
working memory with the process to deal with low battery at run time. Then
the system would have to select between continuing with the same planning
process in the working memory or removing it and giving the resources to the
process dealing with low battery. So the second type of attention a system
can posses shall be defined as the ability of a system to allocate cognitive
resources to maximise model exploitation.

We shall conclude by summing up all these ideas in the following principle:

Principle 7: System attention — Attentional mechanisms allocate both
physical and cognitive resources for system processes so as to maximise per-
formance.

12.6.1 Awareness and Attention

In the cognitive sciences as well as in common life the meanings of attention
and awareness are somehow intermixed. For example we could say that ’to
be aware of something you have to be paying attention to it’. There is a
clear deep relation between both concepts. According to our definitions we
shall establish that relation in a causality form: awareness, the generation of
value in the update of the model, causes a change in the organisation of the
system towards its objectives (remember the definition of structural direc-
tiveness), adapting the system resources, therefore triggering the attentional
mechanisms.

From the previous comment about the relation between attention and
awareness it may seem that we are claiming that there is only top-down
attentional mechanisms; it is not. We claim that any attentional mechanism
enters awareness because value must be generated so as to the system shall
allocate resources in a useful way and not randomly. The difference lies
in that in bottom-up attention the new generation of value is due to the
entering input, whereas in the top-down mechanism it is a result of internal
deliberative operation not related to the current sensory input.
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Chapter 13

Evaluation Criteria

In this chapter we propose a semi-formal evaluation criteria to assess qualita-
tively any cognitive architecture. The first section is dedicated to review the
evaluation methodologies that are used to assess human intelligence, which is
the single available reference for machine intelligence. In the second section
a review of the state of the art in artificial intelligence evaluation is pre-
sented. Finally, the third section exposes the evaluation criteria developed
in this master project to assess cognitive architectures in the view of the re-
quirements extracted in Chapter 2 and the principles presented for cognitive
controllers.

13.1 Assessing Human Intelligence

Human intelligence is the single agreed intelligent system, in the higher sense
of intelligence. Therefore it is necessarily a reference model when addressing
any problem related to artificial intelligence or cognition. So it is when the
problem is that of evaluating intelligent systems, AI cognitive architectures
particularly.

Since there is still not a complete formal theory about human mind nor a
full neurophysiological substratal mapping for it, benchmarking is the single
possibility to measure human intelligence. Given that there is no other in-
telligent system different from human mind, there is no reference to compare
general human intelligence with. We only way we can evaluate the intelli-
gence of a person is through benchmarking. Large efforts by psychologists
have been done to improve tests and metrics for them with this purpose.
The tests are designed to assess performance in tasks that require intelligent
capabilities.

109
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Following we present a short review of these efforts to measure human
intelligence.

13.1.1 IQ tests

An intelligence quotient or IQ is a score derived from one of several differ-
ent standardised psychometric tests attempting to measure intelligence. The
term “IQ,” a translation of the German Intelligenz-Quotient, was coined by
the German psychologist William Stern in 1912 as a proposed method of
scoring early modern children’s intelligence tests such as those developed by
Alfred Binet and Theodore Simon in the early 20th Century. Stern proposed
that an individual’s intelligence level could be measured as a quotient of their
estimated “mental age” and their chronological age. A further refinement of
the Binet-Simon scale was published in 1916 by Lewis M. Terman, from Stan-
ford University, who incorporated Stern’s proposal, and this Stanford-Binet
Intelligence Scale formed the basis for one of the modern intelligence tests
that remains in common use. Although the term “IQ” is still in common use,
the scoring of modern IQ tests such as the Wechsler Adult Intelligence Scale
is now based on a projection of the subject’s measured rank on the Gaussian
bell curve with a center value (average IQ) of 100, and a standard deviation
of 15 (different tests have various standard deviations, the Stanford-Binet IQ
test has a standard deviation of 16).

IQ scores are used in many contexts: as predictors of educational achieve-
ment or special needs, by social scientists who study the distribution of IQ
scores in populations and the relationships between IQ score and other vari-
ables, and as predictors of job performance and income.

13.1.2 General intelligence factor

Modern IQ tests produce scores for different areas (e.g., language fluency,
three-dimensional thinking), with the summary score calculated from sub-
test scores. The average score, according to the bell curve, is 100. Individual
subtest scores tend to correlate with one another, even when seemingly dis-
parate in content.

Mathematical analysis of individuals’ scores on the subtests of a single
IQ test or the scores from a variety of different IQ tests (e.g., Stanford-Binet,
WISC-R, Raven’s Progressive Matrices, Cattell Culture Fair III, Universal
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Nonverbal Intelligence Test, Primary Test of Nonverbal Intelligence, and oth-
ers) find that they can be described mathematically as measuring a single
common factor and various factors that are specific to each test. This kind
of factor analysis has led to the theory that underlying these disparate cogni-
tive tasks is a single factor, termed the general intelligence factor (or g), that
corresponds with the common-sense concept of intelligence. In the normal
population, g and IQ are roughly 90% correlated and are often used inter-
changeably.

Tests differ in their g-loading, which is the degree to which the test score
reflects g rather than a specific skill or ‘group factor” (such as verbal ability,
spatial visualization, or mathematical reasoning). G-loading and validity
have been observed to be related in the sense that most IQ tests derive their
validity mostly or entirely from the degree to which they measure g.

13.1.3 Multiple intelligences

Dissatisfaction with traditional IQ tests has led to the development of a num-
ber of alternative theories, all of which suggest that intelligence is the result
of a number of independent abilities that uniquely contribute to human per-
formance. Most of these theories are relatively recent in origin, though it
should be noted that Louis Thurstone proposed a theory of multiple “pri-
mary abilities” in the early 20th Century.

Howard Gardner’s Theory of multiple intelligences [26] is based on stud-
ies not only on normal children and adults but also by studies of gifted in-
dividuals (including so-called ‘savants”), of persons who have suffered brain
damage, of experts and virtuosos, and of individuals from diverse cultures.
This led Gardner to break intelligence down into at least eight different com-
ponents: logical, linguistic, spatial, musical, kinesthetic, naturalist, intrap-
ersonal and interpersonal intelligences. He argues that psychometric tests
address only linguistic and logical plus some aspects of spatial intelligence;
other forms have been entirely ignored. Moreover, the paper and-pencil for-
mat of most tests rules out many kinds of intelligent performance that matter
in everyday life, such as giving an extemporaneous talk (linguistic) or being
able to find one’s way in a new town (spatial).

Robert Sternberg’s Triarchic theory of intelligence proposes three fun-
damental aspects of intelligence –analytic, creative, and practical– of which
only the first is measured to any significant extent by mainstream tests. His
investigations suggest the need for a balance between analytic intelligence,



112 CHAPTER 13. EVALUATION CRITERIA

on the one hand, and creative and especially practical intelligence on the
other.

Daniel Goleman and several other researchers have developed the concept
of Emotional intelligence and claim it is at least as important as more tradi-
tional sorts of intelligence. These theories grew from observations of human
development and of brain injury victims who demonstrate an acute loss of
a particular cognitive function –e.g. the ability to think numerically, or the
ability to understand written language– without showing any loss in other
cognitive areas.

13.1.4 Models of human mind

We have said that we cannot measure human intelligence yet. That is true
because we have not a reference to compare with, less metrics for that. But
from the 20th century do we have partial models of how the human mind
works that allow us to qualitatively evaluate human intelligence. Some exam-
ples are Baddeley’s model of working memory, Atkinson & Shiffrin’s model of
model memory, Marr’s computational theory of vision, etc. . So from archi-
tectural point of view it is possible to qualitatively assess some functionality
of the human mind –intelligence–.

13.2 Metrics for Artificial Intelligence

From the earlier days of AI there has existed a concern on how it is possible
to determine if an artificial system built to be intelligent actually is, or to
what extent it is.

13.2.1 Turing Test

The Turing test is a proposal for a test of a machine’s capability to demon-
strate intelligence. Described by Alan Turing in the 1950 paper “Computing
machinery and intelligence” [67], it proceeds as follows: a human judge en-
gages in a natural language conversation with one human and one machine,
each of which try to appear human; if the judge cannot reliably tell which is
which, then the machine is said to pass the test. In order to keep the test
setting simple and universal (to explicitly test the linguistic capability of the
machine instead of its ability to render words into audio), the conversation is
usually limited to a text-only channel such as a teletype machine as Turing
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suggested or, more recently, IRC or instant messaging.

In order to pass a well designed Turing test, the machine would have to
use natural language, to reason, to have knowledge and to learn. The test
can be extended to include video input, as well as a “hatch” through which
objects can be passed, and this would force the machine to demonstrate the
skill of vision and robotics as well. Together these represent almost all the
major problems of artificial intelligence.

The test has been criticised on several grounds:

The test is explicitly anthropomorphic. It only tests if the subject resembles
a human being. It will fail to test for intelligence under two circumstances:

• It tests for many behaviors that we may not consider intelligent, such
as the susceptibility to insults or the temptation to lie. A machine may
very well be intelligent without being able to chat exactly like a human.

• It fails to capture the general properties of intelligence, such as the
ability to solve difficult problems or come up with original insights. If
a machine can solve a difficult problem that no person could solve, it
would, in principle, fail the test.

Russell and Norvig argue that the anthropomorphism of the test prevents
it from being truly useful for the task of engineering intelligent machines.
They write: ”Aeronautical engineering texts do not define the goal of their
field as ’making machines that fly so exactly like pigeons that they can fool
other pigeons.”

The biggest criticism to the Turing is that it is explicitly behaviourist or
functionalist: it tests if the system behaves as if it were intelligent, not if it
is in fact intelligent. One of the most famous argument in this direction is
John Searle’s one of the Chinese room [59], in which he claims that a sys-
tem provided with enough symbols and syntactic rules but lacking semantics
could be imputed intelligent behaviour when actually it would be doing only
symbol manipulation without meaning for itself.

To cope with the problem of assessing the generation of meaning by the
system L. Zadeh proposed a different test. L. Zadeh’s test can be formulated
as follows: a paper is presented to the system, and it is supposed to trans-
form it into a summary. The quality of the summary can be judged by the
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ability of the system to generalise and formulate the meaning of the paper
in a sufficiently concise form. No doubt, any system that can do it should be
considered intelligent. Clearly, the system should be capable of generalising.
Says L. Zadeh: ”the ability to manipulate fuzzy sets and the consequent
summarising capability constitutes one of the most important assets of the
human mind as well as the fundamental characteristic that distinguishes hu-
man intelligence from the type of machine intelligence that is embodied in
present-day digital computers”.

However this test still conveys the problem of requiring the huge effort of
implementing human natural language in the system, which of course could
be regarded as a sufficient property for it to be intelligent, but also surely
not a necessary one.

13.2.2 PerMIS

Performance Metrics for Intelligent Systems Workshop (PerMIS) is organised
by the NIST (The National Institute of Standards and Technology) which
is a non-regulatory agency of the United States Department of Commerce.
The institute’s mission is to promote U.S. innovation and industrial compet-
itiveness by advancing measurement science, standards, and technology in
ways that enhance economic security and improve quality of life.

The PerMIS series, started in 2000, is aimed towards defining measures
and methodologies of evaluating performance of intelligent systems.
Attendees include researchers, graduate students, practitioners from indus-
try, academia, and government agencies.

As a result of these workshops, two White papers (2000 and 2001) have
been produced which summarises the ideas on how two evaluate intelligent
systems [47, 48]. This evaluation is centred on the performance of the sys-
tem. Intelligence is evaluated in terms of success of the system performing
certain tasks.

In the first place, a list of abilities to be checked in any test for intelligence
in artificial systems is proposed:

1. to interpret high level, abstract, and vague commands and convert them
into a series of actionable plans

2. to autonomously make decisions as it is carrying out its plans
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3. to re-plan while executing its plans and adapt to changes in the situa-
tion

4. to deal with imperfect sensors

5. to register sensed information with its location in the world and with
a priori data

6. to fuse data from multiple sensors, including resolution of conflicts

7. to handle sensor failure or sensor inadequacy for certain circumstances

8. to direct its sensors and processing algorithms at finding and identifying
specific items or items within a particular class

9. to focus resources where appropriate

10. to handle a wide variation in surroundings or objects with which it
interacts

11. to deal with a dynamic environment

12. to map the environment so that it can perform its job

13. to update its models of the world, both for short-term and potentially
long-term

14. to understand generic concepts about the world that are relevant to its
functioning and ability to apply them to specific situations

15. to deal with and model symbolic and situational concepts as well as
geometry and attributes

16. to work with incomplete and imperfect knowledge by extrapolating,
interpolating, or other means

17. to be able to predict events in the future or estimate future status

18. the ability to evaluate its own performance and improve

From the previous checklist a more reduced one of properties for intelli-
gent systems is obtained:

• the ability to deal with general and abstract information

• the ability to deduce particular cases from the general ones
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• the ability to deal with incomplete information and assume the lacking
components

• the ability to construct autonomously the alternative of decisions

• the ability to compare these alternatives and choose the best one

• the ability to adjust the plans in updated situation

• the ability to reschedule and re-plan in updated situation

• the ability to choose the set of sensors

• the ability to recognize the unexpected as well as the previously un-
known phenomena

• the ability to cluster, classify and categorize the acquired information

• the ability to update, extrapolate and learn

• being equipped with storages of supportive knowledge, in particular,
commonsense knowledge

Vector of Intelligence

In the PerMIS ’00 White Paper it was firstly introduced the idea of the Vec-
tor of Intelligence, augmented in 2001 White Paper to the Multiresolutional
Vector of Intelligence (MVI), which is the level of success of the system func-
tioning when this success is attributed to the intelligence of the system. The
VI is enhanced to multiresolutional because: Evaluation of intelligence re-
quires our ability to judge the degree of success in a multiresolutional system
of multiple intelligences working under multiple goals.

The following list is an example of the set of coordinates for a possible
Multiresolutional Vector of Intelligence (MVI):

(a) memory temporal depth

(b) number of objects that can be stored (number of information units that
can be handled)

(c) number of levels of granularity in the system of representation

(d) the vicinity of associative links taken in account during reasoning of a
situation, or
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(e) the density of associative links that can be measured by the average
number of ER-links related to a particular object, or

(f) the vicinity of the object in which the linkages are assigned and stored
(associative depth)

(g) the diameter of associations ball (circle)

(h) the ability to assign the optimum depth of associations

(i) the horizon of extrapolation, and the horizon of planning at each level
of resolution

(j) the response time

(k) the size of the spatial scope of attention

(l) properties and limitations of the aggregation and decomposition of con-
ceptual units.

Parameters for sensing and perception:

(m) the depth of details taken in account during the processes of recognition
at a single level of resolution

(n) the number of levels of resolution that should be taken into account
during the processes of recognition

(o) the ratio between the scales of adjacent and consecutive levels of reso-
lution

(p) the size of the scope in the most rough scale and the minimum distin-
guishable unit in the most accurate (high resolution) scale

(q) an ability of problem solving intelligence to adjust its multi-scale or-
ganization to the hereditary hierarchy of the system, this property can
be called ?a flexibility of intelligence?; this property characterizes the
ability of the system focus its resources around proper domains of in-
formation.

Parameters that measure the difficulty of the task:

(r) dimensionality of the problem (the number of variables to be taken in
account)
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(s) accuracy of the variables

(t) coherence of the representation constructed upon these variables For
the part of the problem related to maintenance of the symbolic system,
it is important to watch the

(u) limit on the quantity of texts available for the problem solver for ex-
tracting description of the system

and this is equally applicable for the cases where the problem is sup-
posed to be solved either by a system developer, or by the intelligent
system during its functioning.

(v) frequency of sampling and the dimensionality of the vector of sampling.

Additional parameters from the user of the intelligent system:

(w) cost-functions (cost-functionals)

(x) constraints upon all parameters

(y) cost-function of solving the problem

Metrics for intelligence are expected to integrate all of these parameters
of intelligence in a comprehensive and quantitatively applicable form.

13.2.3 Evaluation of cognitive architectures

The subject of measuring or evaluating intelligence is also a major concern
for the AI research community around cognitive architectures and intelli-
gent agents, where it is formulated in the question on how can we evaluate
cognitive architectures. There are several approaches to this question:

• Evaluating the design and development efforts to build an agent with
a certain architecture.

• Measuring the computational efficiency of the architecture.

• Proving the architecture compliance with data from biology and psy-
chology.

• Measuring the performance of a standardised agent with the architec-
ture in the realisation of standardised tasks.

• ...
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Benchmarking vs Formalisation

Cognitive architectures have been designed with very different purposes in
mind and this has led to the practical impossibility of architecture comparison
across application domains. From a general perspective, however, there are
two possible strategies for intelligent systems architecture evaluation:

Benchmarking: It will provide performance information just about specific
tasks and has the added inconvenience of requiring an extant cognitive
system to be able to evaluate. It is difficult and expensive to design
experiments which demonstrate generality.

Formalisation: Formalising core mental properties will render neutral, do-
main independent measures that do not requiere extant systems, i.e.
may be used in analysis and design phases.

This last strategy seems the most desirable but has a major drawback:
formalisation is always hard and at the end it may finish in so fine grained
concepts and associated measures that they would be mostly worthless for
design.

13.3 Proposed Evaluation Criteria

We propose to use the framework described in chapter11 for cognitive sys-
tems to analyse the compliance of a given cognitive architecture with the
principles stated in 12, as a semi-formal evaluation criteria for cognitive ar-
chitectures.

In the following sections we present this evaluation criteria.

13.3.1 System Organisation

As we have seen, the organization of the system may be divided in two
parts, program and structure. Adequate degrees of structures –real and
hypothetical– and program is a key factor for autonomy.

According to the principle of minimal structure [46], the structure of the
system must be minimised for higher autonomy, which stands for maximis-
ing its program. This equals, firstly, to maximise system performance. Sec-
ondly, within the structure, its stands for minimising the real and maximising
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the hypothetical structure. This equals to providing maximum adaptivity.
Within the structure of the system, minimising the real structure is equal
to preserving system cohesion, since reducing real structure the risk of fail-
ure reaching it decreases. Maximising the hypothetic structure equals to
increasing reconfigurability, a factor for system adaptivity.

PROGRAM

HYPOTHETIC

STRUCTURE

REAL

STRUCTURE

a)

c)

b)

d)

Figure 13.1: Evaluation of system organisation: system b) has almost only
real structure, thus it would perform badly and could not adapt at all, any
perturbance would affect the real structure, therefore leading to structural
failure if it were not robust enough. System c) has great proportions of
structure, both real and hypothetic, but no program at all and hence, despite
it may be able to adapt and reconfigure itself for different situations, it has
no means to address small perturbances and would perform poorly. On the
other hand, system d) has no hypothetic structure: the system could not
adapt to perturbances overwhelming the compensating capacity of program,
so if they happened it lead to structural failure. The best organisation is that
of system a), in which real structure is minimal and program and hypothetic
structure maximal, resulting in a system with a priory good performance and
adaptivity.

13.3.2 Controlled coupling

Restricted dependence from the environment

System autonomy involves a certain independence from the environment so
as to reach or maintain certain objectives (state) despite the evolution of the
environment. Since the environment affects the system through their cou-
pling, the adequate characterisation of it in the design of the architecture so
as it is able to control that coupling adequately, by monitoring and/or ma-
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nipulating it, would provide independence from the environment. Adequate
modelling of the coupling is thus a key factor for system performance.

Perception and attention mechanisms play a key role for an architecture
to control the coupling system-environment.

Let’s take an example from mobile robotics. In a mobile robot the wheels
an important element of the coupling system-environment. Imagine that
this coupling is modelled in a simple equation that relates wheel’s rpm with
the robot linear velocity. If the robot happened to enter a muddy terrain its
wheels would slide and the robot’s model of its current state would be wrong.
By contrast, if the robot had a model including sliding effects it could detect
it by monitoring the power demanded by the motors, for example, and take
appropriate actions.

Encapsulation

Encapsulation stands firstly for the minimisation of the couplings between
the elements within the architecture, and secondly for the construction of
interfaces to encapsulate heterogeneous elements. Minimisation of coupling
is a factor for minimisation of structure, thus provides adaptivity. Encapsu-
lation contributes to modularity [58], reconfigurability and scalability.
Reconfigurability equals to greater hypothetic structure hence contributes to
adaptivity.

Model encapsulation facilitates its exploitation, simplifying it and the
contributing to minimising system structure.

13.3.3 Conceptual operation

A cognitive architecture must provide adequate design patterns for address-
ing both conceptual operation and its grounding*. Abstract quantities al-
low the system for generalisation, inference and other deliberative processes
that allow better knowledge exploitation. Potentially instantiated variables
are necessary for planning and reflection over past situations. Instantiated
quantities stands for models of current situation. More instantiated quanti-
ties means more modelling refinement of current state, whereas larger quan-
tities of potentially instantiated quantities stands for greater capability of
the architecture to represent different situations or the same situations with
different models; we could talk about larger “model repository” (see figure
13.2).
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Figura 2.1: Mapas métricos geométricos

debido principalmente a la facilidad de visualización que ofrecen y la compa-

cidad que presentan. Otra ventaja fundamental es la filtración de los objetos

dinámicos al hacerse la extracción previa de caracteŕısticas del entorno. Los

sensores necesarios para construir estos mapas no pueden generar mucho rui-

do, puesto que han de permitir distinguir los diferentes elementos del entorno.

Otro inconveniente a resaltar es su incapacidad para proporcionar un mode-

lo completo del espacio que rodea al robot. Los puntos que no se identifican

como caracteŕısticas geométricas del mundo real son eliminados, con lo que

para ganar en robustez y compacidad se pierde información de los senso-

res. Esta limitación afecta a tareas como la planificación de trayectorias y la

exploración de entornos, reduciendo consiguientemente la utilidad de estos

mapas en la navegación de robots móviles.

En los mapas métricos discretizados,se utiliza la información de los senso-

res sin segmentar y se construye una función de densidad de probabilidad de

ocupación del espacio. Como ésta no puede cubrir todo el espacio de forma

continua, se efectúa una descomposición en celdillas y se asigna una proba-

bilidad a que cada una esté ocupada o libre. Esta división puede ser exacta,

manteniendo las fronteras de los obstáculos como bordes de las celdillas, o

mediante celdillas de dimensiones fijas que se reparten por todo el espacio

[23]. En las figuras 2.2 y 2.3 pueden verse ejemplos de ambos tipos de des-

composición. En la división en celdillas fijas se aprecia que un estrecho paso

entre dos obstáculos puede perderse con esta representación.

En este caso no se analiza la pertenencia de cada celdilla a un objeto in-

dividual, por lo que aunque el espacio esté discretizado se logra su represen-

tación de forma continua. En la figura 2.4 se puede ver un mapa discretizado

o de ocupación de celdillas de un entorno con formas irregulares que haŕıa

complicada la representación geométrica.

Este tipo de mapas puede precisar de una alta capacidad de almace-

namiento, tanto mayor cuanta más resolución se requiera. Por otra parte,

permite representaciones continuas y completas incluso a partir de datos de

sensores con mucho ruido como los de ultrasonidos, lo que los hace especial-

mente prácticos.

DISAM-UPM Paloma de la Puente Yusty 20

freeways

C-space

5

Espacio discretizado en celdillas

Quodtrees y octrees

Figure 13.2: Different proportion of conceptual quantities stands for different
modelling properties

13.3.4 Grounding

Adequate grounding of conceptual operation is obligated for a cognitive ar-
chitecture to be usable in technical systems, so it must provide adequate
defined interface patterns with sensors and actuators. Grounding* is cru-
cial. The cognitive system may reach an abstract solution during problem
solving, but it the needs to be grounded* in values for instantiated quan-
tities and finally physical quantities of the system. When translating the
solution to physical values, there may be several solutions, and constraints
due to limited resources must be taken into account. Modelling of the phys-
ical subsystem is thus necessary, and metaknowledge on its implications for
grounding* valuable.

Perception

Model updating depends critically on perception. It is the indispensable
mechanism to keep the model as close as possible to reality. Deliberative
processes may help refine the models by detecting conflicts and generating
expectations, but they all must be validated by perception. Perception is
also very important for monitoring the grounding* so as to do it properly.
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Perception must be driven by models in two senses. Firstly it must be
directed by expectations generated based upon current models of the state,
and secondly it must be guided by systems objectives. Thus the relevant
conceptual quantities for perception are instantiated quantities and abstract
quantities, in the sense of metaknowledge to guide the perceptive processes.

13.3.5 Modelling

Knowledge representation

Implicit models usually imply fixed algorithms that embed certain knowledge,
i.e. a PID controller embedding in its parameter knowledge about the plant.
They stand for real structure with a small proportion of program if the
parameters of the algorithms can be tuned by the system. By contrast,
explicit models make knowledge independent of algorithms –engines in model
exploitation– reducing the couplings and standing for program, so decreasing
the real structure to the bare algorithms.

Knowledge reusability

Knowledge isotropy, as defined in [43], refers to a property of the knowl-
edge of a system of presenting coherent meanings under different contexts
of interpretation. It stands for the content being independent of the way it
was acquired. Homogeneity in the knowledge encoding stands for using a
single format to represent contents. It presents the advantage of facilitating
reusability, but at the price of losing fine grained specific application.

Despite it is possible to reuse implicit knowledge by reutilisation of the
tandem algorithm-knowledge, explicit knowledge permits greater levels of
reusability given that, in difference to implicit knowledge, both knowledge
and the algorithm are reusable.

Procedural and declarative knowledge

An architecture for intelligent controllers must handle explicit knowledge of
both types. It is important that procedural knowledge is explicit so as it can
be evaluated and modified, augmenting system’s adaptivity.
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Model acquisition

Increased knowledge, that is enhanced models, contribute to adaptivity. The
capacity of the architecture to incorporate and create new models and refine
existing ones is a fey advantage in this sense. A cognitive architecture shall
be evaluated on how new knowledge is introduced and integrated in the sys-
tem either by the system’s developer and by the system itself.

We shall talk about model injection to refer to the incorporation of models
–knowledge– to the system, anyway it may be. In the previous chapter
three main mechanisms, built-ins, learning, and cultural were established.
Artificial systems present the peculiarity that the built-in mechanism can
occur during the operating life of the system in the same way it was realised
during model construction.

A general cognitive architecture must support the three types of model
generation:

Built-ins. The architecture must facilitate the injection of knowledge in the
development phase. Frequently it is an expensive process in both time
and effort, as it happens with expert systems, so facilitating this task
is a key factor in system fast development and low cost. Handling ex-
plicit knowledge and using ontologies, together with encapsulation and
homogeneity help facilitate the task. Injection of new built-in models
once the system is already in its operative life conveys difficult inte-
gration issues and may hazard system’s cohesion in large and complex
applications.

Learning. Any mechanism to incorporate new knowledge improves system’s
performance and adaptivity. Learning from experience, in addition,
increases system’s autonomy also in the sense that the system does not
need external intervention to generate the new models.

Cultural. These mechanisms are the alternative to injecting built-in models
during lifetime and avoid the problem of integrability and ease the task
for the engineers injecting the knowledge by moving the responsibility
for that to the system. They also facilitate model sharing between dif-
ferent systems without human intervention. To support cultural mecha-
nisms for model generation, the architecture must provide mechanisms
to communicate with other cognitive systems. Adequate inputs per-
ception mechanisms for communication inputs and specially a common
ontology are crucial. Besides, cultural model generation needs support
from learning for model the system to internalise the models, make
them of its own, by application-model tuning cycles.
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Anticipatory behaviour and reactive control

In 62 it was stated the need for predictive abilities for planning and antici-
patory behaviour, and also the unavoidable need for fast feedback loops to
keep operation as close as possible to the specification in real-time.

Intuitively, predictive models and planning capacity is related to the po-
tentially instantiated quantities of the GCS, and reactive control to instan-
tiated quantities. A cognitive architecture should be able to concurrently
operate with both types of quantities so as planning and other deliberative
operations do not prevent reactive behaviour and obtain maximal timely
performance. This is critical for the cognitive architecture meeting real-time
requirements. For example, in a mobile robotics application complex path
planning algorithm cannot monopolise computational resources and prevent
execution of fast obstacle avoidance routines.

13.3.6 Objectives and awareness

Intelligent systems operation must be keep convergent to its objectives. Ad-
equate architecture design must guarantee structural directiveness. Archi-
tectural patterns of operation must prevent the system from departure from
its core objectives. For example, the system must not engage in learning or
reflection processes if that deviates it from meeting runtime objectives; this
must be architecturally guaranteed.

Besides, the architecture must provide purposive directiveness. It has
to support explicit representation of objectives so as to be able to evaluate
intermediate objectives that change during system operation.

13.3.7 Attention

Attentional mechanisms are necessary for a cognitive architecture to be ap-
plied in real physical systems with limited resources. They must be architec-
turally provided but directed by explicit application-specific knowledge so as
to be reusable.

The sensory limitation constraint relates to the bounded coupling system-
environment. At each instant of time this coupling contains only a limited
amount of quantities and elements from the environment, leaving out of it
others that could be of interest for the system. For example, in a mobile
robot provided with a camera the visual coupling between the system and
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the environment is limited to that part of the scene that fits into the pixel
array.

Some systems may be able to modify this coupling at each instant of
time. For example, in mobile robotic system with an LCD camera, the cam-
era could be oriented by a servo, or by the movement of the robot.

Both top-down and bottom-up attentional mechanisms can be analysed
as a matching of patterns in the input and the system’s objectives. We only
have to take into a account that all biological systems have a root objective
related to survivability, and that a derivated objective of keeping internal
models updated could be stated.
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Figure 13.3: Bottom-up attentional mechanisms

Firstly we will analyse the bottom-up attentional mechanisms. The oc-
currence of an unexpected event affects the system through the change of the
value of some quantities shared with the environment. This change of a part
of the coupling system-environment generates a new pattern in the percep-
tions that update the models. This pattern is evaluated in the frame of the
objectives of the system and new values are assigned to the elements in the
models, redirecting the awareness processes of prediction and postdiction and
the generation of actions, besides other conceptual operation. This change
in the value assignment is greater if the system had not anticipated the new
entering perceptions through model prediction. Cognitive resources are thus
reorganised together with the physical ones, as a result of the grounding of
the first ones. For example, perceptive processes change their references to
address the new modelling requirements, and action is generated so as to
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direct the sensory resources accordingly. Therefore the coupling with the
environment may change as a result of the whole process. This cycle may be
wired in the system: it could be pre-wired or it could get to it by reinforce-
ment learning, as it occurs in biological systems. In this case the generation
of actions occurs directly from the straightforward assignment of value in
the models, without the intervention of the awareness mechanisms, which
anyway could occur concurrently together with other deliberative processes.

On the other hand, the top-down mechanisms results from awareness
requiring further modelling. The cognitive subsystem, when involved in gen-
eration of meaning from prediction and postdiction in the purchase of some
objective may result in the activation of more objectives and the instantiation
of more conceptual quantities in the form of models and awareness processes
over them. Since the conceptual resources are limited, there would be a
competing process for them which will be resolved by the value associated to
each cognitive function. It could also occur that several of the awareness pro-
cesses competed for establishing different referent to the perception process,
the situation will be resolved the same way. In the end, as in the bottom-up
mechanism of attention, the sensory resources could need to be redirected to
change the system-environment coupling.
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Chapter 14

Analysis of Reference Cognitive
Architectures

In this chapter three of the most representative cognitive architectures will
be analysed and evaluated with the theoretical framework and the criteria
described in the previous chapters. Their suitability and compliance with
the requirements for developing scalable self-aware cognitive control systems
will be this way assessed, and their flaws and missing aspects pointed out.

We have chosen the architectures so as to present an example of each
one of the main objectives cognitive architectures are intended for: ACT-R
to provide a computational theory of human mind, Soar as a computational
theory of general intelligence and problem-solving, and RCS as a theory and
reference model for designing intelligent control systems. The three of them
share two characteristics that make them appropriate to be the subject of
our analysis: firstly, they address the problem of general intelligence, will it
be human or not, and not that of concrete mechanisms or functionality con-
sidered to belong to intelligence, such as inference mechanisms, or attention;
and secondly they are biologically inspired somewhat, so analysing their com-
pliance with our proposed principles, also biologically inspired, makes sense.

A key factor for selecting them is also that they are still active lines of
research with a long time evolution on their backs, since the early 80’s and
backwards. They are tools actively and broadly used at present in the re-
search community, especially ACT-R and Soar in AI and psychology.

However, a critical factor for selecting these architectures to analyse is be-
cause belong to the limited group of cognitive architectures that have been
used in the development of real applications, such as ATC-R in the Cognitive
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Tutors for Mathematics 1, used in thousands of schools across the USA, and
Soar in the products of Soar Technology Inc.2. RCS in its turn has been ap-
plied by the NIST for developing control systems in many domains: UGVs,
space exploration (NASREM3), manufacturing (ISAM4).

The analysis of the architectures will be realised from the perspective of
its application to a real system in operation.

14.1 RCS

14.1.1 General Description

RCS is a cognitive architecture in the sense that it can be used to build arti-
ficial intelligent systems, but in fact it has a broader scope, being a Reference
Model Architecture, suitable for many software-intensive, real-time control
problem domains.

RCS defines a control model based on a hierarchy of nodes. All the con-
trol nodes at all levels share a generic node model. The different levels of
the hierarchy of a RCS architecture represent different levels of resolution.
This means that going up in the hierarchy implies loss of detail of repre-
sentation ad broader scopes both in space and time together with a higher
level of abstraction 14.1. The lower level in the RCS hierarchy is connected
to the sensors and actuators of the system. The nodes are interconnected
both vertically through the levels and horizontally within the same level via
a communication system.

Here we will refer to the 4D/RCS vision [1], being a version of RCS
for Unmanned vehicle systems, a common field of application of cognitive
architectures and thus a good framework to compare them.

RCS Node

The RCS node is an organisational unit of a RCS system that processes
sensory information, computes values, maintains a world model, generates
predictions, formulates plans, and executes tasks. The RCS node is com-
posed of the following modules: a sensory processing module (SP), a world

1www.carnegielearning.com
2www.soartech.com
3NASA/NBS Standard Reference Model for Telerobot Control Systems Architecture
4A Reference Model Architecture for Intelligent Manufacturing Systems
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Df. Intelligent super~sed-autonomy controllers are controllers capable of accepti~g 

commands from hzlman s ~~pen7isors and executing those commafzds with little or nu 

further inpfit from humans in unstructfired a ~ d  often hostile environments. 

An intelligent, supervised-autonomy controller is intelligent in that it is capable of 
executing its assigned mission with or without direct communication from a human supervisor. 

It is supervised in that it responds to commands from superiors with discipline in response to 
established rules of engagement as would any well disciplined human soldier. It is autonomous 

in that it is capable of formulating plans and coordinating with other intelligent agents in the 

execution of mission assignments. Environments in which UGVs with supervised-autonomy 

controllers are required to operate include wban warfare zones? rural battlefields, mountains? 

woods, farrnlands, or desert tesrain, as well as all kinds of weather during day or night. 

1 SENSORS AND ACTUATORS 

Figure 5. A 4D/FtCS reference model architecture for an individual vehicle. Processing nodes, RCS-NODES, 

are organized such that the behavior generation (BG) processes form a command tree. Information in the 

knowledge database (KD) is shared between world modeling (WM) processes in nodes above, below, and at the 

same level within the same subtree. KD structures ase not shown in this figure, On the right, ase examples of the 

functional characteristics of the behavior generation (BG) processes at each level. On the left, are examples of the 

scale of maps generated by the sensory processing (SP) processes and populated by the WM in the KR knowledge 

database at each level. Sensory data paths flowing up the hieraschy typically form a graph, not a tree, Value 

judgment (VJ) processes are hidden behind WM processes. A control loop may be closed at every node. An 
operator interface may provide input to, and obtain output kom, processes in every node. 

In Figure 5, each node consists of a behavior generation (BG), world modeling (WM), 
and sensory processing (SP)? and knowledge database (D) (not shown in Figure 5). Most 

nodes also contain a value judgment (VJ) process (hidden behind the WM process in Figure 5). 
Each of the nodes can therefore function as an intelligent controller. An operator interface may 

access processes in all nodes at all levels. 

Figure 14.1: Example of a RCS hierarchy from [1], in which there can be
appreciated the different resolution levels

modelling module (WM) together a behaviour generation module (BG) and
a value judgement module (VJ). Associated with each node there is also a
knowledge database (KD). Figure 14.2 illustrates the elements and their re-
lations within the node.

Queries and task status are communicated from BG modules to WM
modules. Retrievals of information are communicated from WM modules
back to the BG modules making the queries. Predicted sensory data is com-
municated from WM modules to SP modules. Updates to the world model
are communicated from SP to WM modules. Observed entities, events, and
situations are communicated from SP to VJ modules. Values assigned to
the world model representations of these entities, events, and situations are
communicated from VJ to WM modules. Hypothesised plans are communi-
cated from BG to WM modules. Results are communicated from WM to VJ
modules. Evaluations are communicated from VJ modules back to the BG
modules that hypothesised the plans.

Below we will describe each of these elements.

Sensory Processing

The function of the SP module is perception as it is understood in this
project. It performs several processing actions on sensory inputs from the
SP module of the immediately inferior node, such as filtering, windowing,
grouping and classification. This way, the SP module extracts useful in-
formation from the sensory input stream so as the WM keep updated the
world model in the KD. It also processes the information to adapt it to the
representational level of the superior node and feeds the information to it.
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Figure 14.2: Functional structure of a RCS node

World Modelling

World modelling is a set of processes that construct and maintain a world
model (a representation of the world outside the system) stored in the KD
to support the SP and BG modules. The functions of the WM are:

1. Maintenance and updating of information in the KD.

2. Prediction of expected sensory inputs.

3. Simulation to support the planning functions of the BG (“What if?”
queries)

4. Response to queries for information required by other processes.

Value Judgement

Value judgement is a process that computes value, determines importance,
assesses reliability and generates reward and punishment, in order to support
the functioning of the rest of the modules in the node. Its functions can be
synthesised as:

• Computing the cost, risk, and benefits of actions and plans.

• Estimating the importance and value of objects, events and situations.

• Assessing the reliability of information.

• Calculating the rewarding or punishing effects of perceived states and
events.
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Figure 17. World Modeling (WM) and Value Judgment (VJ) processes. WM and VJ processes 
typically exist in every node of the 4D/RCS architecture. 

4.3 Value Judgment 

As defined in section 3, the Value Judgment (VJ) process is a functional process that computes 

value, estimates importance, assesses reliability, and generates reward and punishment. Figure 

17 also shows a block diagram of the functional operations and data flow pathways for 

interactions between world modeling and value judgment. VJ processes evaluate plan results 
simulated by the WM processes. VJ processes contain algorithms for the following: 

0 Computing the cost, risk, and benefit of actions and plans 

0 Estimating the importance and value of objects, events, and situations 

0 Assessing the reliability of information 

0 Calculating the rewarding or punishing effects of perceived states and events. 

VJ processes compute the cost functions that enable intelligent behavioral choices. VJ 
processes define priorities, set limits on risk, and decide how aggressive or conservative a system 

should be in pursuing its behavioral goals. VJ processes assign values to objects, events, and 

Figure 14.3: World Modelling and Value Judgement processes (from [1])

Knowledge Database

The Knowledge Database consists of data structures with both static and
dynamic information that form a model of the world. Pointers are relation-
ships between entities, events, images and maps. Pointers form syntactic,
semantic, casual and situational networks provide symbol grounding when
link symbolic data to regions in images and maps.

Knowledge database is divided is three parts:

immediate experience: iconic representations5, current sensors values, etc.

short-term memory: symbolic representations, pointers, queues of recent
events, various levels os resolution.

long-term memory: symbolic representations of known things to the sys-
tem.

Behaviour Generation

Behaviour generation uses task knowledge, skills, and abilities along with
knowledge in the world model to plan and control appropriate behavior in
the pursuit of goals. Behavior generation accepts task commands from the
superior node with goals and priorities, fomulates and/or selects plans and
controls action, generating task commands for its inferior nodes. Behavior
generation develops or selects plans by using a priori task knowledge and
value judgment functions combined with real-time infoimation provided by

5iconic representation: 2D array representing and image. Each element contains the
value of a measured variable: colour, light intensity, elevation...
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world modelling to find the best assignment of tools and resources to agents,
and to find the best schedule of actions (i.e. , the most efficient plan to
get from an anticipated starting state to a goal state). Behaviour generation
controls action by both feed forward actions and by feedback error compensa-
tion. Goals, feedback, and feed forward signals are combined in a control law.

The BG module operates as follows (see figure 14.4): task command is
received from BG modules at higher levels. Within the Planner it is decom-
posed into distinct jobs to be sent to the next inferiors BG modules by a Job
Assignor, which also assigns resources. Then a set of Schedulers computes a
schedule for the jobs to complete the plan. Before being executed the plan
is sent to WM to simulate and evaluated by VJ. Them a plan Selector se-
lects the best overall plan, which is then executed in the Executors. The
Executors are responsible for correcting errors between planned results and
the evolution ofthe world state reported by the WM.

Knowledge 
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Plan Evaluations 
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Plans to WM fl 

for Simulation 

Feedback - 
from SP via KD 

for Execution 
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Figure 10. Internal structure of Behavior Generation (BG} processes at two levels with three agents at 

each level. 

Df. The Job Assignor (JA) is a subprocess of BG that decomposes i~zput tasks into job 

assig~xnzents for each ageut wit hi^ the BG process. 

The Job Assignor (JA) perfoms four functions: 

1) JA accepts input task commands from an Executor in a higher level BG process. 
Task coinmands typically involve at least two steps in the current higher level 

plan. 

Figure 14.4: Internal structure of Behaviour Generation [1]
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RCS overall operation

Commands are communicated downward from supervisor BG modules in
one level to subordinate BG modules in the level below. Status reports are
communicated back upward through the world model from lower level sub-
ordinate BG modules to the upper level supervisor BG modules from which
commands were received. Observed entities, events, and situations detected
by SP modules at one level are communicated upward to SP modules at a
higher level. Predicted attributes of entities, events, and situations stored
in the WM modules at a higher level are communicated downward to lower
level WM modules. Output from the bottom level BG modules is communi-
cated to actuator drive mechanisms. Input to the bottom level SP modules
is communicated from sensors.

The specific configuration of the command tree is task dependent, and
therefore not necessarily stationary in time. During operation, relationships
between modules within and between layers of the hierarchy may be reconfig-
ured in order to accomplish different goals, priorities, and task requirements.
This means that any particular computational node, with its BG, WM, SP,
and VJ modules, may belong to one subsystem at one time and a different
subsystem a very short time later.

The interconnections between sensory processing, world modeling, and
behavior generation close a reactive feedback control loop between sensory
measurements and commanded action.

The interconnections between behavior generation, world modeling, and
value judgment enable deliberative planning and reasoning about future ac-
tions.

The interconnections between sensory processing, world modeling, and
value judgement enable knowledge acquisition, situation evaluation, and learn-
ing.

Within sensory processing, observed input from sensors and lower level
nodes is compared with predictions generated by world modelling. Differ-
ences between observations and predictions is used by world modelling to
update the knowledge database. This can implement recursive estimation
processes such as Kalman filtering. Within behavior generation, goals from
higher levels are compared with the state of the world as estimated in the
knowledge database. Behavior generation typically involve planning and ex-
ecution functions. Differences between goals and estimated states are used to
generate action. Information in the knowledge database of each node can be
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exchanged with peer nodes for purposes of synchronization and information
sharing.

14.1.2 Architecture Evaluation

Organisation

In a RCS system the number of nodes and their layering are established in
design time, so they correspond to the system’s real structure and do not
change during operation. However, the connections between nodes for a mis-
sion, that is, the command tree structure, is determined by the system itself
at runtime. Since the command tree hold for long periods of time –a mission
or a task– it corresponds to the hypothetic structure, allowing the system to
adapt to different missions.
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Figure 14.5: RCS layering and command tree

The structure and global operation on the node and each of its modules
correspond to the real structure. However, the algorithms used within them
are not defined in the architecture. For example the scheduling policies in
BG, or the filtering and masking algorithms in the SP can be implemented
so as the system may change between several options for each of them de-
pending on the current mission, based on evaluation realised by VJ modules.
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The algorithms used by VJ modules are not defined too, but since the archi-
tecture do not provide any systematic approach to implement them so as to
be variable, thus standing for hypothetic structure, we shall consider them
predefined at design time and allocate them as real structure.

The parameters for algorithms in all the modules change their value dur-
ing operation so they correspond to program.

In relation to the knowledge-models handled by the architecture, the im-
mediate experience and short-term memory stand for the program, since
entities there are continuously appearing and disappearing or being modi-
fied. The long.term memory stands for the hypothetic structure because it
holds for longer periods of operation.
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Figure 14.6: Organisation of the RCS architecture

Encapsulation

RCS encapsulates control according to the abstraction level in nodes. The
architecture comes with an engineering methodology to systematically ad-
dress the encapsulation of control and cognitive functions. Interfaces be-
tween nodes are clearly defined: bottom-up through SP modules and top-
down through BG modules.
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Communications also occurs horizontally between nodes in a command
tree –performing a mission collaboratively– and vertically between World
Modelling modules from higher to inferior nodes to refine knowledge based
on predictions and stored information. These communications are not archi-
tecturally defined.

Modelling

In RCS the World Model module of each node provides explicit model-based
cognition, since it enables exploitation of models of both the controlled sys-
tem and its environment. The World Modelling module works together with
a Knowledge Database where it stores modelling information, so RCS is com-
pliant with Principle 1, equating declarative knowledge with models.

Procedural knowledge, notwithstanding, is mostly implicit in RCS, or if
explicit, it is not shared between modules because it is inside the SP and BG
modules and not in the KD to be shared.

Built-in models would depend on the current implementation of the RCS
architecture, but they will always be present, since these implicit models will
be embedded in sensory, control and action algorithms. However, preconfig-
ured models are also embedded in the way the nodes are connected in the
implementation of the RCS architecture. Besides, there can always be built-
in explicit models too.

Learning is not implemented in RCS architecture, but there are some
implementations of RCS controllers in which learning has been implemented.
This is the case of [2], learning was embedded within the elements of each
RCS node. Cultural mechanisms are not provided by RCS.

Anticipatory behaviour and reactive control

Predictive models One of the four functions of RCS module WM is answer-
ing “What if?” questions demanded by the planners of the BG modules. For
performing this task, WM simulates the model with the inputs proposed by
the BG modules and obtains the expected results, which then are evaluated
by VJ modules, and that evaluation is sent back to the BG planner.Therefore,
in RCS models are simulation (prediction) oriented.
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WM modules also generate predictions of expected sensory input, thus
enabling part of the process that generate perception in SP modules by di-
recting the process to referents [43].

Reactive control As it has been mentioned in the description of the
RCS architecture, at each node a feedback control loop is closed between the
SP, the WM and the executors of the BG.

In conclussion, at each node in a command tree a reactive control loop
runs concurrently with planning and other cognitive operation.

Unified cognitive action generation

One of the current problems in nowadays complex control systems, which
are usually distributed and involve different resolutions in space, time and
task, is maintaining system cohesion and model coherence across such a wide
range of scopes.

RCS hierarchical structure of nodes provides adequate organisation through
different levels of spatial and time scope, together with a dynamic command
tree that can vary depending on the current task. The proper node’s struc-
ture is what enables coherence between layers: SP module of nodes provide
adequately classified sensory output for the input of SP modules of immedi-
ate superior nodes, task command output from executors in the BG modules
of superior nodes becomes task command input for the Task Decomposition
Planner of the BG modules in the inferior layer.

Perception

In an RCS node perception is realised between the co-ordinated operation
of the Sensory Processing and the World Modelling modules. Perception is
strictly model-driven as stated in the Principle 5: expectations from WM
module drive the operation of the SP module at each node.

Awareness

In RCS awareness is supported in the sense of generating meaning from per-
ceptions. The value judgment module process the perceptions coming from
SP to KD modules and assigns them value in terms of confidence, useful-
ness, coherence etc, in order to integrate them in the knowledge database
and update the models.
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Attention

In RCS the top-down attention mechanism is formed by BG, WM and SP
modules. BG modules, which direct the mechanism, request information
needed for the current task from the SP modules, directing SP and WM
modules to direct their processing towards the elements more relevant for
achieving the goal of the current task. BG requests cause SP modules to
filter the sensory data with the appropriate masks and filters to select the
relevant incoming information. The request by BG modules also causes the
WM to select which worl model to use for prediction, as well as which pre-
diction algorithm to apply.

Bottom up attentional mechanism is driven by the comparison at SP mod-
ules between expected sensory input generated by WM modules and what
actually enters SP modules. Error signals are processed at lower levels first.
Control laws in lower level behavior generation processes generate corrective
actions designed to correct the errors and bring the process back to the plan.
However, if low level reactive control laws are incapable of correcting the
differences between expectations and observations, errors filter up to higher
levels where plans may be revised and goals restructured. The lower levels
are thus the first to compute

Missing aspects

Self is the key aspect that RCS fails to address, in an otherwise suitable
architecture to develop cognitive controllers. The absence of explicit repre-
sentation of lifetime objectives and the lack of self-modelling prevent a system
built with RCS from being able to monitorise its own cognitive operation and
completely modify it.

The hierarchical organisation with RCS, despite proving really useful for
the design of a lot of controllers in many domains, is a problem when trying
to use RCS to develop systems that are intended a priori for isolate operation
but also needed to be integrable in an heterarchical relationship with other
systems if needed. This could be the case for example of the control systems
of two electrical networks interconnected.
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14.2 Soar

14.2.1 General Description

Soar (which stands for State, Operator And Result) is a general cognitive
architecture for developing systems that exhibit intelligent behavior. It is de-
fined as general’ by its creators so as to emphasize that Soar do not intends to
exclusively address the problem of human intelligence, but that of intelligence
in general. The Soar project was started at Carnegie Mellon University by
Newell, Laird and Rosenbloom as a testbed for Newell’s theories of cognition.

Soar is designed based on the hypothesis that all deliberate goal-oriented
behavior can be cast as the selection and application of operators to a state.
A state is a representation of the current problem-solving situation; an op-
erator transforms a state (makes changes to the representation); and a goal
is a desired outcome of the problem-solving activity.

The functioning of Soar is based on a sequence of actions which is called
the Execution Cycle and is running continuously. Soar’s memory is a produc-
tion system that was modelled after OPS-5. It has three separate memories:
working memory, which represent current state, results of intermediate in-
ferences, active goals and active operators, production memory where Soar
stores long-term knowledge mainly procedural, and preference memory.

Soar

ENVIRONMENT

knowledge
retrieval

Preference 
memory

Production
memory

Working
memory

output functionsinput functions

decision
functions

chunking

Figure 14.7: Soar overview
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Functioning of Soar

Soar’s Execution Cycle has the following phases (in the case of not occuring
an impasse and subsequent substates):

1. Input: New sensory data enters the working memory.

2. Proposal: productions that match the current state fire proposing op-
erators.

3. Operator comparison: All resulting operators are compared and as-
signed a collection of preferences, which are absolute considerations
on the operator (’acceptable’, ’reject’, etc.) or relative considerations,
comparing a particular operator with the others (’best’, ’worse’, etc.)
All operators which have an ’acceptable’ preference are candidate op-
erators, that is: are eligible for being the current operator.

4. Decision: one of the candidate operators are selected, which becomes
the current operator, or an impasse is detected and a new state is
created.

5. Application: productions fire to apply the operator. The action it rep-
resents is executed, making the specified changes to the environment.
This changes may be direct to the state in working memory, when Soar
is “thinking”, or indirect, by changing the output command. In this
case the resultant changes in the state have to be updated from input.
Also, a Soar program may maintain an internal model of how it ex-
pects an external operator will modify the world; if so, the operator
must update the internal model (which is substructure of the state).

6. Output: output commands are sent to the external environment.

Working memory

Soar represents its knowledge of the current situation in working memory.
It is stored as basic units of information called working memory elements
(WME), which consist of an identifier-attribute-value. All WME’s sharing
its identifier are an object. Objects stand for data from sensors, results of
intermediate inferences, active goals, operator, and any other entity of the
problem. WME’s are also called augmentations because they provide more
information about the object.

Objects in working memory are linked to other objects. The value of a
WME may be an identifier of another object. Thus there can be hierarchical
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or heterarchical relationships between objects. The attribute of an object is
usually a constant, because it is just a label to distinguish one link in working
memory from another. Working memory is a set, meaning that there can not
be two elements with the same identifier-attribute-value triple.

The elements in working memory come from one of four sources:

1. The actions of productions create most working memory elements.
However they must not destroy or modify the working memory ele-
ments created by the decision procedure or the I/O system (described
below).

2. The decision procedure automatically creates some special state aug-
mentations (type, superstate, impasse, ...) when a state is created.
States are created during initialization (the first state) or because of
an impasse (a substate).

3. The decision procedure creates the operator augmentation of the state
based on preferences. This records the selection of the current operator.

4. The I/O system creates working memory elements on the input-link
for sensory data.

Production memory

The productions contained in Production memory specify all patterns of ac-
tion Soar can perform. They represent Soar long-term knowledge. Each
production consists of a set of conditions and a set of actions. If the condi-
tions of a production match working memory, the production fires, and the
actions are performed, making changes to the working memory.

The conditions of a production typically refer to presence or absence of
objects in working memory. Productions may fulfil one, and only one of these
roles:

1. Operator proposal

2. Operator comparison

3. Operator selection

4. Operator application

5. State elaboration: new descriptions of the current situation can be done
through monotonic inferences
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2.3. PRODUCTIONS: LONG-TERM KNOWLEDGE 17
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Figure 2.14: An abstract view of production memory. The productions are not related to
one another.

This is not the literal syntax of productions, but a simplification. The actual syntax

is presented in Chapter 3.

The conditions of a production may also specify the absence of patterns in working

memory. For example, the conditions could also specify that “block A is not red”

or “there are no red blocks on the table”. But since these are not needed for our

example production, there are no examples of negated conditions for now.

The order of the conditions of a production do not matter to Soar except that the

first condition must directly test the state. Internally, Soar will reorder the conditions

so that the matching process can be more efficient. This is a mechanical detail that

need not concern most users. However, you may print your productions to the screen

or save them in a file; if they are not in the order that you expected them to be, it is

likely that the conditions have been reordered by Soar.

2.3.1.1 Variables in productions and multiple instantiations

In the example production above, the names of the blocks are “hardcoded”, that

is, they are named specifically. In Soar productions, variables are used so that a

production can apply to a wider range of situations.

The variables are bound to specific symbols in working memory elements by Soar’s

matching process. A production along with a specific and consistent set of variable

Figure 14.8: Abstract view of Production memory

Preference memory

The selection of the current operator is determined by the preferences stores
in preference memory. Preferences are suggestions or imperatives about the
current operator, or information about how suggested operators compare to
others.

For an operator to be selected, there will be at least one preference for it,
specifically, a preference to say that the value is a candidate for the operator
attribute of a state (this is done with either an ”acceptable” or ”require”
preference). There may also be others, for example to say that the value is
”best”.

Episodic and Semantic memory

Traditionally all long-term knowledge in Soar was represented as produc-
tions, which are explicit procedural knowledge but which also encode declar-
ative knowledge implicitly. However, recently separate episodic and seman-
tic memories have been added. Episodic memory hold a history of previous
states, while semantic memory contains facts or ’beliefs’, which are structures
of WME.
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Blocks-World Example

As a brief depiction of the functioning of SOAR a simplified version of the
Blocks-World example is offered. Instead of a three block world, a two block
world will be considered. The initial state has two blocks, A and B, on a
table. The goal is to place block A on top of block B, 14.9 The parting
situation of the Working Memory is that of 14.10 without the boxes labelled
O3 and O4.

72 Chapter 10. SOAR

Objects in WM are formed by working memory elements (WME). A WME
is a set of identifier-attribute-value. Thus, it represents the minimal quanity of
information. An object is the set of all WME which share the same identifier.

10.1.3 Block-World Example

As a brief depiction of the functioning of SOAR a simplified version of the Blocks-
World example is offered. Instead of a three block world, a two block world will
be considered.

The initial state has two blocks, A and B, on a table. The goal is to place block
A on top of block B, fig. 10.2. The parting situation of the Working Memory is
that of fig. 10.3 without the boxes labelled O3 and O4.

B

A

T1

A B T1

Figure 10.2: The Blocks-World. Above, the initial situation:
blocks A and B on a table (labelled T1.) Below, the desired
situation, block a on top of block B.

In fig. 10.3, the lines of text inside each box are the WME; it can be observed
that every WME within the same box share the same identifier. Each box repre-
sents an object.

The figure represents the state of WM after the operator selection has been
completed. There are two candidate operators, O3 and O4, and only one of them,
O4, is the current operator.

28th May 2002

Figure 14.9: The Blocks-World. Above, the initial situation: blocks A and
B on a table (labelled T1.) Below, the desired situation, block a on top of
block B.

In 14.10, the lines of text inside each box are the WME; it can be ob-
served that every WME within the same box share the same identifier. Each
box represents an object. The figure represents the state of WM after the
operator selection has been completed. There are two candidate operators,
O3 and O4, and only one of them, O4, is the current operator.

Impasses, Substates and Learning

As it has been mentioned in the decision procedure it can happen one of
the following possibilities: the available preferences suggest a single operator
(or several between which it can be selected randomly), the available prefer-
ences suggest multiple operator and that ambiguity can not be resolved or
the available preferences do not suggest any operators. In this situation an
impasse has happened. There are four different impasses that can arise from
preference scheme:
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S1

S1 is a state

S1 has a problem!space blocks

S1 has a thing B1

S1 has a thing B2

S1 has a thing T1

Si has an ontop O1

S1 has an ontop O2

S1 has operator O4

S1 has two proposed operators

O2

O2 has a top!block B2

O2 has a bottom block T1

O1

O1 has a top!block B1

O1 has a bottom block T1

T1 is a table

T1 is named table

T1 is clear

T1

B1 is a block

B1 is named A

B1 is clear

B1

B2 is a block

B2 is named B

B2 is clear

B2

O3 is named move!block

O3 has moving block B2

O3 has destination B1

+O3

O4 is named move!block

O4 has moving block B1

O4 has destination B2

+O4

Figure 10.3: Diagram showing the different elements in working mem-
ory. The lines of text are theWME, the boxes are objects. The next step to
the current state would be the application of operator O4.

10.2 Elements and Concepts of SOAR

10.2.1 Elements of SOAR

WorkingMemory (WM): WorkingMemory represents the short-termknowledge
of SOAR. It is formed by a representation of the actual state of the environ-
ment. Additionally, working elements of the different functions (fig. 10) of
SOAR also appear. The information is represented in theWorking Memory
as objects. These are “groups” of basic elements calledWorking Memory Ele-
ments, (WME). Each WME is a minimal unit of information, an attribute or
augmentation, which describes a particular characteristic of the object.

Production Memory (ProdM): Production Memory is the long-term knowledge
of SOAR. It is a representation of the general patterns of behaviour which
SOAR knows. Each pattern is called a Production.

Preference Memory (PrefM): It contains the different priorities and considera-
tions for each of the candiate operators considered for the current state by the
Knowledge Retrieval Functions.

28th May 2002

Figure 14.10: Diagram showing the different elements in working memory.
The lines of text are the WME, the boxes are objects. The next step to the
current state would be the application of operator O4.

Tie impasse - A tie impasse arises if the preferences do not distinguish
between two or more operators with acceptable preferences.

Conflict impasse - A conflict impasse arises if at least two values have
conflicting better or worse preferences (such as A is better than B and
B is better than A) for an operator.

Constraint-failure impasse - A constraint-failure impasse arises if there
is more than one required value for an operator, or if a value has both
a require and a prohibit preference.

No-change impasse - An operator no-change impasse occurs when either
a new operator is selected for the current state but no additional pro-
ductions match during the application phase, or a new operator is not
selected during the next decision phase.

Soar handles this by creating a new state (substate of the previous one)
in which the goal (subgoal from the point of view of the superstate) of the
problem-solving is to resolve the impasse. In the substate operators will be
proposed and selected through knowledge retrieval as in the normal way de-
scribed before. While problem solving in the subgoal it may happen that a
new impasse may occur, leading to new subgoals. Therefore it is possible for
Soar to have a stack of subgoals. Although problem solving will tend to focus
on the most recently created state, problem solving is active at all levels, and
productions that match at any level will fire.

In order to resolve impasses, subgoals must generate results that allow
the problem solving at higher levels to proceed. The results of a subgoal
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are the working memory elements and preferences that were created in the
substate, and that are also linked directly or indirectly to a superstate (any
superstate in the stack).

An impasse is resolved when processing in a subgoal creates results that
lead to the selection of a new operator for the state where the impasse arose.
When an operator impasse is resolved, it means that Soar has, through prob-
lem solving, gained access to knowledge that was not readily available before.
Therefore, when an impasse is resolved, Soar has an opportunity to learn, by
summarizing and generalising the processing in the substate.

Soar’s learning mechanism is called chunking; it attempts to create a new
production, called a chunk. The conditions of the chunk are the elements of
the state that (through some chain of production firings) allowed the impasse
to be resolved; the action of the production is the working memory element
or preference that resolved the impasse (the result of the impasse). The
conditions and action are variablized so that this new production may match
in a similar situation in the future and prevent an impasse from arising.

14.2.2 Architecture Evaluation

Organisation

In Soar the the real structure is formed by the memory structure, the syntax
of productions, preferences and WME’s, the executive cycle, the knowledge
retrieval functions and the chunking procedure. The correspondence of each
element of Soar to the different parts of the organisation is showed in 14.11.

Conceptual operation and grounding

Soar is an architecture that mainly addresses the conceptual operation of
abstract and potentially instantiated variables. Grounding is left to the im-
plementation of input and output interfaces. In Soar operation there is not
distinction between potentially instantiated quantities and actually instanti-
ated ones. The single difference, which do not affect Soar internal operation
upon them, is that if the quantities are instantiated may be modified at the
beginning of the Executive cycle by external input. They are also grounded
at the end of the cycle, but that do not affect internal operation at all.
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Figure 14.11: Soar organisation

Knowledge Representation and Modelling

Soar encodes knowledge in three formats: productions, WMEs and pref-
erences. Despite new memories have been recently added –semantic and
episodic–, so as to augment the architecture by providing support for ex-
plicit declarative knowledge, the encoding of it rests the same: only symbolic.
Soar does not support other kinds of representation such as maps, sensory
patterns or iconic representations.

Model generation

Soar models in the form of objects in WM and productions can be injected
by the users through a communication interface during operation as well as
being built-in. The architecture also provides learning with chunking, which
provides autonomous increasing of procedural knowledge. A somewhat more
implicit and connectionist-like learning occurs with preferences modification.
Soar do not provide cultural mechanisms.

Unified Cognitive action generation

In Soar knowledge homogeneity in WMEs and production structure allows
for model coherence. In addition, model cohesion is granted because working
memory is a set: there can never be two WMEs at the same time that have the
same identifier-attribute-value triple. This do not apply to preferences, but
this situation do not affect system’s cohesion: preferences are not objective
knowledge, they are partial evaluations of what is best. Thanks to preference
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conflict Soar can learn and improve its knowledge through impasses.

Anticipatory behaviour and reactive control

Soar presents a serious bottleneck: only one operator is applied in each ex-
ecution cycle. This architecturally prevents from planning or ’thinking’ and
operating over the environment through the output interface concurrently. In
addition, grounding –output– only occurs at the end of the execution cycle.
Soar is therefore not an appropriate architecture for real-time applications.

Perception

Soar only addresses a part of the perceptive process, leaving the initial part
to the interface implemented externally to provide input to its input function.
Input function adds new WMEs to the working memory only at the beginning
of the execution cycle, and the perceptive operation in each cycle concludes
when productions fire due to the new state in the working memory.

Objectives and awareness

Soar handles evaluation and meaning generation through preferences. They
are attributes of operations with a limited semantics based on logic opera-
tions. Preferences are modified due to productions firing. The mechanism is
fixed and the system cannot manipulate it. The evaluation is also limited to
operators, and do not apply to other kind of knowledge within Soar.

Soar can also handle explicit goals by defining them as attributes of cur-
rent state and rules in production memory that check the state and recognise
when the goal is achieved. Subgoaling structure as the objective structure
described in 86 can be generated by succesive impasses.

Missing aspects

Soar architecture address mainly the deliberative part of a cognitive system,
not providing fine grained design patterns for perception and grounding.

Despite providing a mechanism to generate value through preferences, it
is very limited by semantics, and the evaluation mechanism only actuates
over the contents and not the cognitive operation of Soar. Besides, there is
no modelling of the functioning of Soar’s cognitive operation so the architec-
ture is lacking self-awareness or consciousness.
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Knowledge is symbolic and the problem of symbol grounding is left to the
specific implementation of the interfaces for the input and output functions
for each application.

14.3 ACT-R

14.3.1 General Description

ACT-R (Adaptive Control of Thought–Rational) is a cognitive architecture
mainly developed by John Robert Anderson at Carnegie Mellon University,
which is also a theory about how human cognition works. Most of the ACT-
R basic assumptions are also inspired by the progresses of cognitive neuro-
science, and, in fact, ACT-R can be seen and described as a way of specifying
how the brain itself is organized in a way that enables individual processing
modules to produce cognition.

Like other influential cognitive architectures, the ACT-R theory has a
computational implementation as an interpreter of a special coding language.
The interpreter itself is written in Lisp, and might be loaded into any of the
most common distributions of the Lisp language.

Like a programming language, ACT-R is a framework: for different tasks
(e.g., Tower of Hanoi, memory for text or for list of words, language compre-
hension, communication, aircraft controlling), researchers create ”models”
(i.e., programs) in ACT-R. These models reflect the modelers’ assumptions
about the task within the ACT-R view of cognition. The model might then
be run and afterwards tested by comparing the results of the model with the
results of people doing the same tasks. By ”results” we mean the traditional
measures of cognitive psychology:

• time to perform the task

• accuracy in the task

• neurological data such as those obtained from FMRI

ACT-R has been used successfully to create models in domains such as:

• Learning and Memory.

• Higher level cognition, Problem solving and Decision making.
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• Natural language, including syntactic parsing, semantic processing and
language generation.

• Perception and Attention.

Beside its scientific application in cognitive psychology, ACT-R has been
used in other, more application-oriented oriented domains.

• Human-computer interaction to produce user models that can assess
different computer interfaces.

• Education, where ACT-R-based cognitive tutoring systems try to ”guess”
the difficulties that students may have and provide focused help.

• Computer-generated forces to provide cognitive agents that inhabit
training environments.

Achitectural Overview

ACT-R architecture consists of a set of modules, each devoted to process-
ing a different kind of information. Coordination in the behaviour of these
modules is achieved through a central production system , constituted by the
procedural memory and a pattern matcher. This central production system
is not sensitive to most of the activity of these modules but rather can only
respond to the limited amount of information that is stored in the buffers of
the modules.

ACT-R’s most important assumption is that human knowledge can be
divided into two irreducible kinds of representations: declarative and pro-
cedural. Within the ACT-R code, declarative knowledge is represented in
form of chunks, which are schema-like structures, consisting of an isa slot
specifying their category and some number of additional slots encoding their
contents

Modules

There are two types of modules:

Perceptual-motor modules , which take care of the interface with the
real world (i.e., with a simulation of the real world). The most well-
developed perceptual-motor modules in ACT-R are the visual and the
motor modules.
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Memory modules . There are two kinds of memory modules in ACT-R:

Declarative memory , consisting of facts such as “a dog is a mam-
mal”, “Rome is a city”, or 1 + 2 = 3, encoded as chunks.

( fact3+4

isa             addition-fact

 addend1    three

 addend2    four

 sum           seven             )

Figure 14.12: Example of an ACT-r chunk

Procedural memory , made of productions. Productions represent
knowledge about how we do things: for instance, knowledge about
how to write the letter ’a’, about how to drive a car, or about how
to perform addition.

( p name

     Specification of buffer tests

  ==>

     Specification of buffer

      transformations    
)

condition part

delimiter

action part

Figure 14.13: Structure of an ACT-R production

Buffers

ACT-R accesses all its modules through buffers. The only exception to this
rule is the procedural module, which stores and applies procedural knowl-
edge. It does not have an accessible buffer and is actually used to access
other module’s contents. For each module, a dedicated buffer serves as the
interface with that module. The contents of the buffers at a given moment
in time represents the state of ACT-R at that moment.
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The goal buffer represents where the agent is in the task and preserves
information across production cycles.

Pattern Matcher

The pattern matcher searches for a production that matches the current
state of the buffers. Only one such production can be executed at a given
moment. That production, when executed, can modify the buffers and thus
change the state of the system. Thus, in ACT-R cognition unfolds as a
succession of production firings.

ACT-R

Buffers

EXTERNAL WORLD

Intentional 
Module

Motor ModuleVisual Module

Declarative
memory

Visual Buffer Motor Buffer

Retrieval Buffer

Current Goal

Production
execution

Pattern
matching

Procedural
memory

Figure 14.14: ACT-R main elements and relations

ACT-R Operation

The buffers in ACT-R hold representations in the form of chunks determined
by the external world and internal modules. In each cycle patterns in these
buffers are recognised, a production matching that pattern fires and its ex-
ecution changes the state in the buffers, which are updated for the next cycle.
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The architecture assumes a mixture of parallel and serial processing.
Within each module, there is a great deal of parallelism. For instance, the
visual system is simultaneously processing the whole visual field, and the
declarative system is executing a parallel search through many memories in
response to a retrieval request. Also, the processes within different modules
can go on in parallel and asynchronously. However, there are also two levels
of serial bottlenecks in the system. First, the content of any buffer is limited
to a single declarative unit of knowledge, a chunk. Thus, only a single mem-
ory can be retrieved at a time or only a single object can be encoded from
the visual field. Second, only a single production is selected at each cycle to
fire.

ACT-R is a hybrid cognitive architecture. Its symbolic structure is a
production system; the subsymbolic structure is represented by a set of mas-
sively parallel processes that can be summarized by a number of mathemat-
ical equations. The subsymbolic equations control many of the symbolic
processes. For instance, if several productions match the state of the buffers
(conflict), a subsymbolic utility equation estimates the relative cost and ben-
efit associated with each production and decides to select for execution the
production with the highest utility. Similarly, whether (or how fast) a fact
can be retrieved from declarative memory depends on subsymbolic activa-
tion equations for chink retrieval, which take into account the context and
the history of usage of that fact. Subsymbolic mechanisms are also respon-
sible for most learning processes in ACT-R.

ACT-R can learn new productions through composition. In the case two
productions may fire consecutively a new one can be created by collapsing
the previous two and embedding knowledge from declarative memory, which
would be that chunks in the buffers that matched the old productions.

14.3.2 Architecture Evaluation

Architecture Organisation

Conceptual operation and grounding

Conceptual operation an grounding considerations made about Soar stands
mainly the same for ACT-R. Internal ATC-R processes is mostly independent
from grounding, which occurs via perceptual-motors modules. The difference
with Soar is that some of these modules have been developed, like the vi-
sion and auditive modules for perception, and manual and speech module
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Figure 14.15: ACT-R’s elements correspondence to organisation

for grounding. However, these modules are implemented for psychological
modelling of human capabilities, and not for a general purpose.

Encapsulation

ACT-R encapsulates its operation with modules and buffers. Modules only
interact with each other through the buffers.

Model generation

ACT-R supports two forms of learning: at subsymbolic level, by tuning
activations and utilities through experience, secondly by generation of new
productions through composition at symbolic level.
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Unified cognitive action generation

Different models and knowledge encodings may be hold in each ACT-R mod-
ules, but for ACT-R to operate on them they are unified as chunks within
buffers.

Anticipatory behaviour and reactive control

ACT-R can plan and elaborate predictions by operating with any of its
buffers but the motor one, or any other that performs output functions.
The operation is restricted by two limitations: the content of each buffer
is limited to a single chunk, and only one production fires at a time. This
second bottleneck constraints the capability to plan and close feedback loops
concurrently, since despite module operate in parallel, the loops are restricted
by the bottlenecks of buffers and the firing of a single production.

Awareness

ACT-R possesses implicit and explicit evaluation. Implicit evaluation is
realised by utility and activation equations, which represent ACT-R sub-
symbolic level, that is the connectionist part of the architecture. Explicit
evaluation is performed by productions recognising when the explicit goal in
the goal buffer matches the current state.

Attention

Attentional models have been developed with ACT-R for the Visual and
Auditory modules. They are specific sets of productions for focusing at-
tention in the operation of these modules. Attention is not therefore ar-
chitecturally driven but knowledge-driven. There is no possibility to direct
attention within the proper production matcher, for example, which would
increase ACT-R performance in terms of time response.

14.4 Global assessment

Soar and ACT-R provide design patterns for some intelligent capabilities,
such as inference and learning, but these architectures miss to address the
whole description of patterns and functional decomposition that an architec-
ture for building complex control systems has to provide, such as appropriate
I/O interfaces, distribution in computational separate components, etc. .
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RCS seems a good methodology to address the construction of a whole
control system, whereas ACT-R and Soar provide good tools to build the
inner operation of the upper nodes in a RCS hierarchy.

14.4.1 Conceptual operation and grounding

Soar and ACT-R architectures do not provide a general solution for ground-
ing conceptual operation. Dedicated modules or interfaces must be imple-
mented ad-hoc. In the other hand, RCS provides specific design patterns for
perception and grounding in a hierarchical manner.

14.4.2 Modelling

One of the most important issue a cognitive architecture must face when
been applied for large control systems that must operate in real-time con-
ditions, such as process plants, is maintaining a complete model of instant
situation –system state– and operate over it. Parallelism is critical for this.
Let’s observe how the studied architectures would perform in this situation,
taking for example a plant for producing cement, whose instantaneous state
is formed by thousands of variables and the behaviour modelled by thousands
of rules and/or equations.

Soar’s working memory would contain and incredibly huge amount of
objects, to be matched against thousands of productions in each Execution
Cycle, which will be unpredictably long. ACT-R would have to match only
the contents of the buffers against the productions, which would remain a
big number. If the number of modules is low the frequency of each cycle
will be higher than Soar’s, but at the cost of holding a poorly representation
of the current situation. If we increased the number of modules, ACT-R
would face the same problem of Soar. RCS, by contrast, can maintain a
large representation of the current state by distributing it between the nodes
together with operation on it. Parallelism, as mentioned before, is the key.
One may claim that for ACT-R and Soar the problem could be solved by
splitting the core of the production system into many of them. That is
true, but neither Soar nor ACT-R provide architectural support for that nor
guidelines to address the problems of integration and cohesion that would
arise.
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Model generation

The three architectures support built-ins model injection, although do not
address integrability issues that are to be cared of by the human operator.
They also present support for learning, at both symbolic and subsymbolic in
ACT-R and RCS, and mainly symbolic in Soar. But what the three of them
fail to support are cultural mechanisms.

14.4.3 Awareness

Evaluation mechanisms, despite present in these architectures are not as
complete as required. ACT-R evaluation is mostly implicit in utilities for
productions and activations for chunks. This presents the advantages of the
connectionist approach in terms of learning through parameter tuning, but
it is limited to evaluating the contents and not the cognitive operation itself.
This limitation also applies to Soar and its preferences. Both architectures
also support an explicit evaluation by matching the current state with the
objectives or goals. However this state only covers the representation of the
extern world or a simulation of it, and not the conceptual operation.

RCS distributes the evaluation among the nodes with the Value Judge-
ment module of each one. Perceptions, models and planned actions are eval-
uated against the objectives at each level.

14.4.4 Missing aspects

The three approaches miss the main requirement of providing mechanisms
for the control system to engineer itself. None of them provides tools to en-
code knowledge about the architecture itself and exploit it, less full models
of itself. The three of them present some kind of awareness by implementing
evaluation or objective-matching mechanisms, but the own evaluation mech-
anisms are not subjected to monitorisation, evaluation or modification.

An architecture being able to monitorise and modify its own operation
would have fewer proportion of real structure and more of hypothetic than
those analysed in these document, thus providing greater adaptation capa-
bilities and increasing system’s robustness. Self-awareness aspects are the
missing point of current cognitive architectures
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Ultimate Principles

In the previous chapter we concluded that the key missing point in cog-
nitive architectures to provide a solution for the development of complex
intelligent control systems addressing autonomy and dependability issues is
self-awarenes and consciousness. In this chapter we will present an overview
of the studies on consciousness and then we will analyse the integration of
consciousness in our design guideline for cognitive controllers.

15.1 Consciousness

Consciousness is regarded to comprise qualities such as subjectivity, self-
awareness, sentience, and the ability to perceive the relationship between
oneself and one’s environment. It is a subject of much research in philosophy
of mind, psychology, neuroscience, and cognitive science.

David Chalmers claims that the whole set of problems raised by the brain
and mind can be divided in two classes:

The Easy Problem. The first class contains phenomena of consciousness
that have a possible explanation in terms of computational or neural
mechanisms.

• Ability to categorise and respond to inputs.

• Integration of information across different modalities.

• Reportability of mental states.

• Ability to access one’s own mental states.

• Attentional control mechanisms.

159
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• Behaviour control.

• Possession of a wake-sleep cycle.

The Hard Problem. What it is referred to as the really hard problem
is the question of how consciousness arise from the activity of non
conscious nerve cells –or any other type of physical substrate–. Thomas
Nagel in his famous paper “What is it like to be a bat?” stressed the
impossibility for science to cross the gap between brain and mind, since
science can only deal with empirical and objective evidence and not
with the subjective characteristic of conscious experience. This relates
directly to the problem of qualia1, or raw feels, and the source of self-
awareness.

There is not agreement in the scientific community whether the hard prob-
lem can be addressed by science or if it can be addressed at all. Some relevant
voices relegated consciousness to an epiphenomenon. However, relevant evi-
dence and experiments from psychology and neuroscience and several studies
from cognitive science in the last three decades have restated consciousness as
a matter of proper scientific research. John G. Taylor defines this increasing
interest as a “racecourse for consciousness” [64].

15.1.1 Models of Consciousness

Several models of human mind in general and consciousness in particular
have been proposed so far. There are two main approaches, as suggested by
Chalmers: models that try to capture specific mechanisms such as visual pro-
cessing by constructing detailed neural network modules that simulated the
behavioural responses observed in animals or humans, and the approach that
address consciousness from a functional perspective and use an informational-
processing point of view rather than specific neural activity. Both approach,
notwithstanding, tackle the easy problems, although some may claim that
their model sure can also cope with the hard one if adequately extended. We
will present here only two of them quite representative. Let’s mention the
basic ideas underlying them:

1qualia is “an unfamiliar term for something that could not be more familiar to each
of us: the ways things seem to us”[21]
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Global Workspace Theory

Bernard J. Baars

Global Workspace theory is a simple cognitive architecture that has been
developed to account qualitatively for a large set of matched pairs of con-
scious and unconscious processes (Baars, 1983, 1988, 1993, 1997). Such
matched contrastive pairs of phenomena can be either psychological or neu-
ral. Psychological phenomena include subliminal priming, automaticity with
practice, selective attention, and many others. Neural examples include coma
and blindsight. Like other cognitive architectures (Newell, 1990), GW theory
may be seen in terms of a theater metaphor of mental functioning. Con-
sciousness resembles a bright spot on the theater stage of Working Memory
(WM), directed there by a spotlight of attention, under executive guidance
(Baddeley, 1992). The rest of the theater is dark and unconscious. ”Behind
the scenes” are contextual systems, which shape conscious contents without
ever becoming conscious, such as the dorsal cortical stream of the visual sys-
tem. Bernard J. Baars and Katherine McGovern, from [6]

B.J. Baars, S. Franklin / Neural Networks 20 (2007) 955–961 957

Fig. 2. Global Workspace Theory (GWT). A theatre metaphor for Global

Workspace Theory.

prediction was initially made in 1983, and is not suggested by

any other theory of which we know.
2

There is quite extensive

current debate about the evidence regarding this hypothesis

in the cognitive neuroscience literature (Tse, Martinez-Conde,

Schlegel, & Macknik, 2005).

2. The Working Memory Hypothesis (conscious contents

recruit unconscious WM functions needed for verbal

rehearsal, visual semantics, and executive functions) (Figs. 1

and 2);

GWT makes other novel predictions. For example,

it suggests that classical Working Memory (WM) may

involve distributed specialized systems, including language

components, long-term memory, visuospatial knowledge and

the like, which are recruited by the conscious components of

WM tasks. Current brain evidence strongly suggests that the

specialized components of WM are highly distributed in the

cortex and subcortical structures like the basal ganglia. Most

of these functions are unconscious in their details, but they

generally have briefly conscious components. It is noteworthy,

therefore, that all the classical “boxes” of Alan Baddeley’s WM

models have a conscious component—including conscious

perception of input, conscious access to verbal rehearsal, and

conscious decisions regarding verbal report. The most recent

2
GWT also converges well with the work of Chein and Schneider (2005),

whose “net of nets” architecture is based on experimental studies of skills that

are novel vs. practiced (and therefore less conscious). Practiced, predictable

skills show a marked reduction in cortical activity (Schneider & Shiffrin,

1977). It is interesting that the resulting network architecture bears a striking

resemblance to GWT.

version of Baddeley’s WM has a new conscious component,

called the Episodic Buffer (Baddeley, 2000). However, it does

not have a central role in recruiting linguistic, visuospatial

and executive functions; the current concept of the Episodic

Buffer is only the front end of long-term episodic memory.

GWT suggests a more active view of the conscious aspects of

human cognition. It is the consciously evoked “broadcast” that

serves to mobilize and guide the many unconscious knowledge

domains that enable Working Memory functions like inner

speech, visual problem solving and executive control (Fig. 2).

3. The Conscious Learning Hypothesis (all significant learning

is evoked by conscious contents, but the learning process

itself and its outcomes may be unconscious).

The theoretical reason for this claim is that learning novel

information requires a novel integration of existing knowledge

with unpredictable input. Thus GWT provides a principled

prediction for the role of consciousness in learning. It is

noteworthy, in this respect, that after five decades of attempts

to prove learning without consciousness, most findings show

typically small effect sizes, at very brief time intervals, using

highly predictable stimuli such as emotional facial expressions

(Snodgrass & Shevrin, 2006). More demanding learning tasks

almost always have a clear conscious component,
3

and there is a

clear “dose-response” function between the degree of conscious

exposure and the amount of learning that results.
4

This is indeed

what was historically called the Law of Effect, which should

perhaps be called the Law of Conscious Effect. The “conscious”

aspect of learning, which was taken for granted before the

behavioristic revolution, has now become largely forgotten.

Nevertheless, the evidence continues to show a clear monotonic

relationship between conscious study time and learning.

We now describe these two theoretical domains, Global

Workspace Theory and LIDA.

1.5. Global workspace theory

Global workspace theory aims to specify the role of

conscious brain events in cognition (Baars, 1983, 1988, 1997).

A theatre metaphor for GWT is a useful first approximation.

Unconscious processors in the theatre audience receive

broadcasts from a conscious “bright spot” on the stage.

Control of the bright spot corresponds to selective attention.

Backstage, unconscious contextual systems operate to shape

and direct conscious contents. GWT is a rigorously developed

set of testable hypotheses, and the theatre metaphor is only a

convenient reminder of its basic features (Baars, 1988, 2002).

GWT was developed based on robust evidence regarding

conscious processes, combined with the artificial intelligence

3
Implicit learning allows behavior that can be described as rule-directed

to be learned from conscious experience without the subject being able to

articulate the rule. However, all studies of implicit learning make use of

conscious events to evoke implicit learning processes.

4
Recent evidence indicates more robust learning effects for emotional

stimuli, such as emotional facial expressions. Such biologically relevant inputs

can be treated as single chunks in GWT, which do not require the recruitment

of novel knowledge sources that require consciousness to be integrated.

Figure 15.1: Schematic diagram of the theatre metaphor for Global
Workspace Theory, from [5]

The global workspace model of Baars is an example of the functionalist-
information processing approach.

The Relational Mind and CODAM models

John G. Taylor
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Taylor proposes a relational definition for consciousness: Consciousness
arises solely from the process by which content is given to inputs based on
past experience of a variety of forms. It has a relational structure in that
only the most appropriate memories are activated and involved in further
processing. It involves temporal duration so as to give time to allow the
relational structure to fill out the input. This thereby gives the neural activity
the full character of inner experience. [64]

Taylor CODAM model corresponds to the second approach and is a model
of attention control which has been interpreted as possessing the ability to
create both the conscious experience of content as well as a neural mechanism
for ownership [66].

986 J.G. Taylor / Neural Networks 20 (2007) 983–992

Fig. 1. The two-component nature of attention. The two-component model
of attention is shown in the figure as being composed of the controlled part
(sensory and motor cortex) and the controlling part (prefrontal cortex, PFC,
parietal lobe, PL and the tempero-parietal junction TPJ).

& Corbetta, 2005). It is possible that the bottom-up salient
goals are also sent to the prefrontal cortex, similarly to the
endogenous goals, as shown by observation of early prefrontal
activation of visual stimuli (Foxe & Simpson, 2002).

These experimental results and theoretical approaches can
be summarised as involving top-down bias as goals, which will
have been set up in prefrontal cortices either as endogenous
signals entered as task rules, say, from experimental instruction
or as exogenous biases from lower cortices from salient
inputs. This bias is transmitted to an attention movement
signal generator (inverse model controller or IMC) which then
sends a new attention signal to lower level cortical stimulus
activity; this can be summarised as a two-stage model, in which
the higher level control system generators (goals and IMC)
send attention signals to lower level cortical representations
(Corbetta & Shulman, 2002; Corbetta et al., 2005; Kanwisher
& Wojciulik, 2000). A simplified version of this is shown in
Fig. 1. In the figure, the controller component is composed of
the goals module acting as a bias to send out an attention signal
from the IMC to feedback to the input modules acting as those
which are controlled by attention.

There are already various models of attention which have
been studied in the recent past, ranging from those of a
descriptive form, such as the already-mentioned influential
‘biased competition’ model of attention (Desimone & Duncan,
1995) to the more detailed neural-network based models
involving large-scale simulations, such as those of Deco and
Rolls (2005) or of Mozer and Sitton (1998). However these
and other neural models of attention have not had a clear
overarching functional model guiding their construction. If
we consider the recent results on attention of brain imaging
experiments (Corbetta & Shulman, 2002; Corbetta et al., 2005;
Kanwisher & Wojciulik, 2000) then we find that the language
of engineering control theory (see for example Phillips and
Harbor (2000)) could be applied to help understand the
complex-looking network of modules observed to be involved
in attention effects. Already the 2-stage model of attention
as a control generator system together with a controlled
system described in the previous paragraph indicates the
simplest ‘ballistic control’ model of this sort. A more general
engineering control approach will be employed in this paper,
encompassing and surpassing the simple ballistic control
model. This will allow us to develop a more detailed neural
modelling framework to help understand the nature of networks
involved in higher order cognitive processes, even leading to
suggestions for the creation of consciousness. More specifically
it will allow us to suggest some very specific functions for
consciousness which have detailed experimental implications.

Fig. 2. The CODAM model architecture. The figure shows the modules of the
CODAM model of attention control, based on engineering control mechanisms.
Visual input, for example, enters at the INPUT module and is sent, through
a hierarchy of visual processing modules, to activate the object map module,
OBJECT MAP. At the same time in the exogenous case it rapidly accesses
the GOAL module, so causing bias to be sent to the inverse model controller
denoted IMC in the figure (the generator of the signal to move the focus
of attention). This sends a modulatory feedback signal to the object map, of
multiplicative or additive form, to amplify the requisite target activity entering
the object map. As this happens the corollary discharge of the signal from the
IMC is sent to the MONITOR module, acting as a buffer for the corollary
discharge signal. This can then be used both to support the target activity
from the object map accessing its sensory buffer, the WORKING MEMORY
module, and to be compared with the requisite goal from the GOAL module.
The resulting error signal from the monitor module is then used to enhance the
IMC attention movement signal and so help speed up access as well as reduce
the activities of possible distracters.

These will be explored later, after we have briefly reviewed the
CODAM model.

The engineering control approach to attention was developed
in the Corollary Discharge of Attention Movement (CODAM)
model in Taylor (2000, 2003) (see also Taylor (2002a, 2002b),
Taylor and Fragopanagos (2005)) and used in Taylor and
Rogers (2002) to simulate the Posner benefit effect in vision.
It was further developed in the CODAM model application
to the attentional blink in Fragopanagos, Kockelkoren, and
Taylor (2005), and more recently in numerous applications of
CODAM to working memory tasks (Korsten, Fragopanagos,
Hartley, Taylor, & Taylor, 2006) as well as to help understand
results observed by brain imaging of paradigms involving
emotion and cognition in interaction (Taylor & Fragopanagos,
2005). Here I will use these various applications, and their
associated models, to provide a unified description of the
observed effects and to lay a framework for further extensions
into cognition: to reasoning, thinking and planning and
ultimately to consciousness.

Fig. 2 is a schematic diagram of the CODAM architecture.
The input enters the system through the module labelled ‘visual
cortex’, and is passed to the ‘objects’ module (where high
level visual representations have been stored after suitable
hierarchical learning). Attention acts by a bias arising from the
‘goals’ module to guide the ‘attention controller’ module to
send out a signal changing the focus of attention by altering
the sites of modulation of the input to the visual cortex and
object modules (or to a suitable spatial map that can be included
in CODAM). The activation in the goals module can arise
either top-down (from rules set up as part of an experiment,
for example) or bottom-up (by fast activity going to prefrontal
cortex as observed by various EEG and fMRI studies mentioned
earlier). These modules: the goals, attention controller and
object/visual cortex modules, form a very simple form of

Figure 15.2: The CODAM model architecture. The figure shows the modules
of the CODAM model of attention control, based on engineering control
mechanisms. Visual input, for example, enters at the INPUT module and is
sent, through a hierarchy of visual processing modules, to activate the object
map module, OBJECT MAP. At the same time in the exogenous case it
rapidly accesses the GOAL module, so causing bias to be sent to the inverse
model controller denoted IMC in the figure (the generator of the signal to
move the focus of attention). This sends a modulatory feedback signal to the
object map, of multiplicative or additive form, to amplify the requisite target
activity entering the object map. As this happens the corollary discharge of
the signal from the IMC is sent to the MONITOR module, acting as a buffer
for the corollary discharge signal. This can then be used both to support
the target activity from the object map accessing its sensory buffer, the
WORKING MEMORY module, and to be compared with the requisite goal
from the GOAL module. The resulting error signal from the monitor module
is then used to enhance the IMC attention movement signal and so help
speed up access as well as reduce the activities of possible distracters. From
[63]

Other interesting studies of consciousness are [62], [22] and [19].
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15.1.2 Machine consciousness

Together with the previous models which, coming from the neuroscience and
psychology, have been used to build computational models of consciousness,
efforts from the more engineer fields of robotics and AI are also addressing
the problem of consciousness to build self-aware agents. Relevant examples
of the current trend are Sloman’s virtual machines [60] and Holland’s robots
with internal models [32].

15.2 Consciousness for cognitive controllers

As was mentioned in the introductory chapter, maintaining system cohe-
sion becomes a critical challenge in the evolutionary trajectory of a cognitive
system. From this perspective, the analysis proceeds in a similar way: if
model-based behaviour gives adaptive value to a system interacting with an
object, it will give also value when the object modelled is the system itself.
This gives rise to metacognition in the form of metacontrol loops that will
improve operation of the system overall.

Apart of the many efforts in the analysis of reflective mental processes in
biological systems that we are not going to analise in detail here2, there are
also many research threads that are leading to systematically addressing the
question of embedding self-models in technical systems. Some of them are:

• System fault-tolerance has been addressed by means of replication of
components to avoid single critical failure points; but the determina-
tion of faulty states to trigger re-configuration has been a problem of
increasing importance in correlation with increased system complexity.
Fault detection and isolation methods have developed sophisticated
model-based reasoning mechanics to do these tasks. The models used,
however, are specifically tailored to the task, a common problem else-
where.

• Cognitive systems research has put consciousness back into the agenda
after many years of ostracism [25] and hence it is addressing the ques-
tion of computer-based model building of this phenomenon.

• Information systems security –regarding human intrusion and the sev-
eral varieties of exo-code– has become concerned about the question of
self/nonself distinction in ICT systems [35].

2See for example [24] for philosophical, cognitive science perpesctives and [36] for neu-
roscience and psychology ones.
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• Information systems exploitation is fighting the scalability problem in
maintenance tasks trying to mimic the scalable organisation of biolog-
ical systems [33]

In our context, control systems, our main concern is not of human mim-
icking or reduction of cost of ownership. The question is more immediate and
basic: system robustness. There are many technical systems that we depend
upon: from the electrical networks, to the embodied pacemakers or ESPs
in our cars. Dependability is a critical issue that is being hampered by the
increased complexity of individual systems and from emergent phenomena in
interconnected ones.

The justifiable quest for methods for managing reasoning about selves
in this context is driven by the desire of moving responsibility for system
robustness from the human engineering and operation team to the system
itself. This is also the rationale behind the autonomic computing movement
but in our case the problem is much harder as the bodies of our machines
are deeply embedded in the physics of the world.

But the rationale for having self models is even deeper than that: if model-
based control overpasses in capabilities to those of error-based control, the
strategy to follow in the global governing of a concrete embedded system is
not just recognising departure from setpoints but anticipating the behavior
emerging from the interaction of the system with it surrounding reality.

Hence the step from control systems that just exploit models of the ob-
ject, to control systems that exploit models of the pair system + object is a
necessary one in the ladder of increased performance and robustness. This
step is also observable in biological systems and while there are still loads
of unsolved issues around, the core role that “self” plays in the generation
of sophisticated behaviour is undeniable. Indeed, part of the importance
of self-consciousness is related to distinguishing oneself from the emviron-
ment in this class of models (e.g. for action/agency attribution in critical,
bootstrapping learning processes).

15.2.1 Defining consciousness

Lets now recall Principle 6 in which a definition for awareness in cognitive
control system is proposed:

Principle 6: System awareness — A system is aware if it is continuously
perceiving and generating meaning from the countinuously updated models.
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We can take another step forward and propose that when the target of
the awareness mechanism is the aware system itself, consciousness happens:

Principle 8: System self-awareness/consciousness — A system is
conscious if it is continuously generating meanings from continously updated
self-models in a model-based cognitive control architecture.

System self-awareness –consciousness– just implies that the continuous
model update include the updating of submodels about the system itself
that are being evaluated. The models of the supersystem –system+object–
are used in the model-based generation of system behaviour. So the process
of behaviour generation is explicitly represented in the mind of the behav-
ing agent as driven by a value system. In this sense the interpretation of
consciousness that we propose here depart from higher-order theories of con-
sciousness [53, 40] in the fact that self-awareness is not just higher order
perception. Meaning generation is lacking in this last one.

It is remarkable that our definition of consciousness directly supports one
of the generally agreed value of consciousness which is maintaining system co-
hesion by keeping a history of the system and interpreting current operation
upon it, i.e. Taylor’s relational perspective –past experiences give content to
inputs[64]– and Damasio’s autobiographical self[19]. It is exactly the function
that results from evaluating self-models including both postdictive pasts, di-
rectly refers to system’s history, predictive futures, which cannot be obtained
but by applying known models –stored from previous experience– to current
inputs.

Another question of extreme relevance is the maximally deep integration
of the model and metamodel. As Kriegel [39] argues, higher-order moni-
toring theory makes the monitoring state and the monitored state logically
independent with a mere contingent connection. We are more in the line of
Kriegel same-order monitoring theory that argues for a core non-contingent
relation between the monitoring state and the monitored state.

One big difference between being aware and being conscious cames from
the capability of action attribution to the system itself thanks to the capa-
bility of making a distinction between self and the rest of the world3. This
implies that a conscious agent can effectively understand –determine the

3Obviously, even while we argued for awareness/consciousness as a purely input, per-
ceptual process, these associations to action processes links consciousness with action
generation and even with system’s ethics.
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Figure 15.3: System self-awareness –consciousness– implies the continuous
update and meaning generation of a from a model-update that includes a
submodel of the very system

meaning– the effect of its own actions (computing the differential value de-
rived from self-generated actions, i.e. how its own actions change the future).

Even more, conscious agents can be made responsible and react to past
actions by means of retrospectively computing values. So, a conscious agent
will be able to understand what has been its role in reaching the actual state
of affairs.
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This appreciation of the coupling of consciousness to value systems is also
being done in biological studies of consciousness. Let us quote Edelman [22]
at this point:

Consciousness appeared in vertebrate evolution when reentrant connec-
tions in the thalamocortical system arose to link anterior memory systems
dealing with value to the more posterior cortical systems devoted to percep-
tion. The result was an enormous increase in discriminatory power resulting
from myriad integrations among the reentrant circuits comprising this dy-
namic core.

15.2.2 Consciousness and Attention

In chapter ?? the relation between awareness and attention was defined.
We can now extend that relation to consciousness. This shall be achieved
by splitting the top-down mechanism according to whether the meaning –
evaluation in terms of objectives– occurs implicitly, and then we can talk
about awareness, or that evaluation and the objectives are explicit through
self-modelling, thus we shall talk of consciousness triggering the attentional
mechanisms.

15.3 Evaluating consciousness

Since even consciousness definition still remains a matter of debate, the prob-
lem of determining whether a system, were it artificial or not, is conscious,
which at the end is the same, is open too. However, several proposals of what
the properties consciousness confers to a system possessing it have been de-
livered:

Human consciousness

Taylor [64] proposes a checklist of features of the brain that his model requires
in order to support conscious experience.

1. A suitable of memory structures

(a) Of buffer form

(b) Of permanent form

2. A processing hierarchy
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3. Suitable long-lasting bubbles of activity at the highest coding level of
the hierarchy.

4. A competitive system to produce a winner among all the activities on
the buffer memories at any one time.

This list provides interesting criteria to develop metrics for a cognitive
architecture supporting Taylor’s model of consciousness.

Machine consciousness

One of the clearest efforts to formalise what properties an artificial conscious
system must exhibit is Aleksander’s axioms [3]:

Let A be an agent in a sensorily-accessible world S. For A to be conscious
of S it is necessary that:

Axiom 1 (Depiction): A has perceptual states that depict parts of S.

Axiom 2 (Imagination): A has internal imaginational states that recall
parts of S or fabricate S-like sensations.

Axiom 3 (Attention): A is capable of selecting which parts of S to depict
or what to imagine.

Axiom 4 (Planning): A has means of control over imaginational state se-
quences to plan actions.

Axiom 5 (Emotion): A has additional affective states that evaluate planned
actions and determine the ensuing action

15.4 Principles for cognitive controllers

We shall compile below the principles proposed in this master project for
cognitive control systems.

1. Model-based cognition. A cognitive system exploits models of other
systems in their interaction with them.

2. Model isomorphism. An embodied, situated, cognitive system is as
good performer as its models are.

3. Anticipatory behavior. Except in degenerate cases, maximal timely
performance is achieved using predictive models.
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4. Unified cognitive action generation. Generate action based on
an integrated, scalable, unified model of task, environment and self in
search for global performance maximisation.

5. Model-driven perception. Perception is realised as the continuous
update of the integrated models used by the agent in a model-based
cognitive control architecture by means of real-time sensorial informa-
tion.

6. System awareness. An aware system is continuously perceiving and
computing meaning -future value- from the continuously updated mod-
els. This render emotions.

7. System attention. Attentional mechanisms allocate both body and
computational resources for system processes so as to maximise perfor-
mance.

8. System self-awareness/consciousness. A conscious system is con-
tinuously generating meanings from continuously updated self-models
in a model-based cognitive control architecture.

15.5 Adding consciousness to RCS

Coming back to the discussion in chapter 14, we will expose to conclude
this chapter a few considerations about adding conscious capabilities to a
cognitive architecture. We will take the specific case of augmenting RCS
with self-awareness mechanisms for these two reasons already presented when
analysing it:

• It provides adequate design patterns and methodologies for building
intelligent controllers for real-time systems, as its application to several
real systems has proven.

• It is in close accordance to our model-based view of cognition, and
almost fully compliant with our principles up to the level of awareness.

Our evaluation of RCS revealed two main drawbacks: procedural knowl-
edge heterogeneity and the absence of self-modelling. This prevents the ar-
chitecture for incorporating self-awareness. Now suppose we would want to
add consciousness to a system controlled by and RCS architecture. The
question is what exactly do we need to do it.
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In the architecture there will be a network of processes interconnected at
a time. They will be processes performed within one node or there will also
be processes that spread across several nodes (Fig. 15.4). We shall call them
normal processes.
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Figure 15.4: Processes running at an instant of time in RCS

Now suppose that for adding consciousness to the operation of the system
we add new processes that monitor, evaluate and reflect the operation of the
“unconscious” normal processes (Fig. fig:cons-processes). We shall call these
processes the “conscious” ones. We would need and interface or connections
so as the new processes have access to information about normal processes
at runtime.
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Figure 15.5: Processes running at an instant of time in RCS

These processes will exploit models of the operation of the normal ones
–the self-models– so as to evaluate their current operation. They could mon-
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itor for example only certain connections between RCS nodes and, relying
on this information and known patterns –models– of operation and knowl-
edge about the RCS nodes –also models– infer what is going on inside. This
way we would keep the encapsulation properties of the nodes and reduce the
communication bandwidth that would require a full monitoring, but at the
cost of requiring more processing and more memory for model storage in the
conscious processes (Fig. 15.6).
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Figure 15.6: Alternatives for connecting conscious processes

We will turn now to analyse the functionality that renders the conscious
processes. It seems natural that the conscious processes resulted from the
operation of functional units such as those the architecture already has, that
is nodes. We then would have “conscious” nodes responsible for modelling
the proper nodes of the RCS architecture, perceiving their operation to up-
date that models at runtime and actuating on them so as to optimise the
architecture operation. It may seem that this is just duplicating the archi-
tecture: we are going to need double number of nodes, twice communication
bandwidth and memory, etc. . But this is not since these conscious nodes
need not be different nodes but those already existing. Sure more resources
in communications and memory are going to be needed, duplicate access to
some variables or more storage memory. But in an RCS hierarchy conscious-
ness is not needed at any level and any node. Probably only nodes in the
highest levels would be required to provide self-awareness frequently, nodes
in the inferior levels would only need to activate that mechanism in the case
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of certain events or by queries from other nodes.



Chapter 16

Conclusions and Future Work

This chapter summarises the main conclusions reached in the study reported
in this work. Future work and a discussion of the promising line of research
of which this work only covers the initial stage are also presented.

16.1 Conclusions

16.1.1 Engineering requirements for cognitive archi-
tectures

In chapter 10 the growing demand for dependability and survivability, to-
gether with the increase in complexity and integration needs, was mapped to
requirements for a cognitive architecture to provide a solution for designing
cognitive control systems addressing these issues.

16.1.2 Principles for cognitive controllers

A list of principles to serve as a guideline for building cognitive control system
up to the level of conscious controllers has been presented. The principles
are based upon a model-base conception of cognition.

16.1.3 Evaluating cognitive architectures

The presented conceptual framework of the General Cognitive System has
proved useful to guide the analysis of cognitive architectures and point out
their characteristics and deficiencies to address the requirements the should
meet to provide a trustworthy solution for the development of complex cog-
nitive controllers. Three representative architectures have been analysed and
the conclusions extracted can be summarised into de following points:

173
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• RCS provides adequate functional encapsulation and distribution to-
gether with appropriate input/output design patterns, all of which
makes RCS the best suited for real-time applications.

• Soar and ACT-R provide useful mechanisms for learning and delibera-
tive operation.

• The three architectures provide learning mechanisms but non of them
supports cultural mechanisms for model generation.

• Current cognitive architectures fail to provide self-awareness mecha-
nisms.

16.1.4 Consciousness

The role that conscious mechanisms play in biological systems has been stud-
ied. The interest on them for engineering purposes in the field of complex
control systems justified by the similarities between the problems they pro-
vide a solution for in biological systems, and the problems about complexity
and integrability that face control engineering nowadays.

The reason why current cognitive architectures do not support conscious-
ness has been pointed out. To conclude, a guideline about how to provide
them with self-awareness mechanisms and the requirements and design trade-
offs derived have been discussed.

16.2 Related publications

The work developed for this master project has contributed to several pub-
lications presented in different conferences and a journal article, which are
listed below:

• Ricardo Sanz, Ignacio López, Manuel Rodŕıguez, and Carlos Hernández.
Principles for consciousness in integrated cognitive control,
in Neural Networks, Volume 20, Num. 9 Special Issue “Brain and
Consciousness”, pages 938–946, November 2007.

• Ricardo Sanz and Ignacio López and Carlos Hernández. Self-awareness
in Real-time Cognitive Control Architectures, in: Proc. AAAI
Fall Symposium on “Consciousness and Artificial Intelligence: Theoret-
ical foundations and current approaches”, November 2007, Washington
DC.
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• Ignacio López, Ricardo Sanz, and Carlos Hernández. Architectural
factors for intelligence in autonomous systems, in: AAAI
Workshop “Evaluating Architectures for Intelligence”, 22–23 July 2007,
Vancouver, B.C.

• Ignacio López, Ricardo Sanz, Carlos Hernández, and Adolfo Hernando.
General autonomous systems: The principle of minimal struc-
ture, in: Proceedings of the 16th International Conference on Systems
Science, Volume 1, pages 198–203, 2007.

• Ignacio López, Ricardo Sanz, Carlos Hernández, and Adolfo Hernando.
Perception in general autonomous systems, in: Proceedings of
the 16th International Conference on Systems Science, Volume 1, pages
204–210, 2007.

16.3 Future Work

This work has presented a theoretical framework for cognitive systems and
guidelines for designing intelligent controllers, but many aspects still remain
to be addresses and new ones have arisen. The theoretical framework of the
General Cognitive System needs to be improved so as to cover more aspects
related to intelligence, such as learning, communication or Arbib’s(proto-
)language, and provide more fine grained description others, such as concep-
tual operation to explain specific conceptual processes like the various types
of inferences. It also needs to be augmented to include a complete theoretical
specification consciousness mechanisms.

Besides, the evaluation criteria needs to be enhanced by a mathematical
formulation in order to establish metrics, which is crucial for comparing al-
ternatives at design time.

The proposed principles for cognition up to consciousness open a promis-
ing line of research that needs further theoretical work, especially in the study
modelling and meaning generation. Special attention deserve the mechanisms
of cultural learning and the role ontologies may play in them and in giving
the system self-engineering capabilities by the system being provided with
the ontology used to built it. The principles may need also to be extended to
introduce emotions, whose value in evolutionary terms for biological systems
are becoming clear together with the key role they may play in cognition.
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Finally a complete model architecture supporting consciousness should be
defined in a formal language such as UML or SysML so as to be implemented
as software for intelligent control systems.



Bibliography

[1] James Albus, Alexander Meystel, Anthony Barbera, Mark Del Giorno,
and Robert Finkelstein. 4d/rcs: A reference model architecture for un-
manned vehicle systems version 2.0. Technical report, National Institute
of Standards and Technology, Technology Administration U.S. Depart-
ment of Commerce, 2002.

[2] Jim Albus, Roger Bostelman, Tommy Chang, Tsai Hong, Will Shack-
leford, and Michael Shneier. Learning in a hierarchical control system:
4d/rcs in the darpa lagr program. Journal of Field Robotics, 23(11-
12):Pages 943 – 1104, 2006.

[3] Igor Aleksander and Barry Dunmall. Axioms and tests for the presence
of minimal consciousness in agents. Journal of Consciousness Studies,
10(4-5):7–18, 2003.

[4] Bernard J. Baars. In the Theater of Consciousness: The Workspace of
the Mind. Oxford University Press, oct 2001.

[5] Bernard J. Baars and Stan Franklin. An architectural model of con-
scious and unconscious brain functions: Global workspace theory and
ida. Neural Networks, 20(9):955–961, November 2007.

[6] Bernard J. Baars and Katherine McGovern.

[7] Len Bass, Sholom Cohen, and Linda Northrop. Product line architec-
tures. In Proceedings for the International Workshop on Development
and Evolution of Software Architectures for Product Families, Las Navas
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