
This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2018.2800744, IEEE
Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS. PREPRINT VERSION. ACCEPTED JANUARY, 2018 1

Integrating Different Levels of Automation: Lessons
from Winning the Amazon Robotics Challenge 2016
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Abstract—This article describes Team Delft’s robot winning
the Amazon Robotics Challenge 2016. The competition involves
automating pick and place operations in semi-structured environ-
ments, specifically the shelves in an Amazon warehouse. Team
Delft’s entry demonstrated that current robot technology can
already address most of the challenges in product handling:
object recognition, grasping, motion, or task planning; under
broad yet bounded conditions. The system combines an industrial
robot arm, 3D cameras and a custom gripper. The robot’s
software is based on the Robot Operating System to implement
solutions based on deep learning and other state-of-the-art
artificial intelligence techniques, and to integrate them with off-
the-shelf components. From the experience developing the robotic
system it was concluded that: 1) the specific task conditions
should guide the selection of the solution for each capability
required, 2) understanding the characteristics of the individual
solutions and the assumptions they embed is critical to integrate
a performing system from them, and 3) this characterization can
be based on ‘levels of robot automation’. This paper proposes
automation levels based on the usage of information at design or
runtime to drive the robot’s behaviour, and uses them to discuss
Team Delft’s design solution and the lessons learned from this
robot development experience.

Index Terms—grasping, manipulators, motion planning, object
recognition, robot control

I. INTRODUCTION

THE Amazon Robotic Challenge (ARC) [1], [2], was
launched by Amazon Robotics in 2015 to promote re-

search into unstructured warehouse automation and specifi-
cally robotic manipulation for picking and stocking of prod-
ucts.

Low volume, high-mix productions require flexibility to
cope with an unstructured environment, and adaptability to
quickly and cost-effectively reconfigure the system to different
tasks. Current commercial solutions have mainly focused on
automating the transport inside the warehouse, whereas only
few solutions exist for the individual handling of the products
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[3], and are usually limited to one product type at a time1.
Currently there is a diversity of grippers available such as
2-finger grippers [4], VERSABALL [5], or more advanced
robotic hands such as [6] or [7] that can be customized
for different applications. The selection of the gripper for
a manipulation applicationgreatly affects the flexibility and
requirements of the grasping process. More flexible robotics
solutions are needed that benefit from advances in artificial
intelligence and integrate them with these more dexterous and
reliable mechanical designs for grippers and manipulators.

The integration of these robot technologies into an agile
and robust solution, capable of performing on the factory
floor, is itself an engineering challenge [8]. During a robotic
application development design decisions need to be made,
e.g. about feedback control vs. planning, that entail trade-
offs between flexibility and performance. For example, in
the first ARC edition in 2015, the winning robot used a
feedback approach with visual servoing, achieving a robust
pick execution that outperformed the competitors. However,
the public media was disappointed about the general speed
performance of the robots [9]. The average pick time for the
winner was above one minute (⇠30 sorts per hour), while
industry demands the ⇠400 sorts/h achieved by humans [2].

There were two key ideas guiding Team Delft’s approach
to building the ARC 2016 robot: 1) reuse available solutions
whenever possible, and 2) chose them so as to automate the
system to the level required by the different challenges in the
competition, making useful assumptions based on the structure
present in the task.

To reuse available off-the-shelf solutions, Team Delft robot
was based on an industrial manipulator and 3D cameras,
and the robot software was based on the Robot Operating
System (ROS) [10]. ROS provides tools and infrastructure
to develop complex robotic systems, runtime communications
middleware, and the ROS open-source community provides
off-the-shelf components for many robot capabilities.

There is a variety of aspects that have been identified useful
to characterize robotic systems [11]: modularity vs. integra-
tion, computation vs. embodiment, planning vs. feedback, or
generality vs. assumptions. The dichotomy planning vs. feed-
back in robotics represents only two (important) classes in the
spectrum of solutions. These range from open-loop solutions
that exploit assumptions and knowledge about the task and
the workspace at design time, to feedback strategies that use
runtime information to drive robot’s behaviour and deal with

1E.g. see work of Profactor GmbH. at:
https://www.profactor.at/en/solutions/flexible-robotic/handling/
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uncertainties. After analysis and reflection on the ARC robot
development experience, different levels of robot automation
are proposed in this paper to characterize the design solutions.
In Team Delft’s robot design, the different solutions were
chosen to automate every part of the robotic system to the
level required. Different automation solutions render different
system properties in terms of flexibility, performance, and
adaptability.

Section II discusses the requirements posed by the ARC
2016 competition scenario, and analyses the challenges it
poses to robot perception, manipulation and task planning.
In section III the levels of robot automation are presented,
and used to explain Team Delft’s robot concept in section IV.
The performance of the system is discussed in view of the
levels of automation in section V, and some lessons learned
are reported. Finally section VI provides concluding remarks.

II. MANIPULATION IN THE AMAZON ROBOTICS
CHALLENGE

The Amazon Robotics Challenge (ARC) stems from a
broader and fundamental research field of robotic manipulation
in unstructured environments. The two tasks for the 2016
challenge [12] involved manipulating diverse, small sized
products to pick and place them from an Amazon shelving unit
(the shelf ) structured in twelve bins, to a temporary container
(the tote), as is illustrated in Fig. 1. We begin this section by
providing further technical details of the challenge, followed
by a comparative analysis of the challenge to relevant scientific
problems.

A. The Amazon Robotics Challenge 2016
The challenge for the year 2016 was titled Amazon Picking

Challenge and consisted of two tasks to be autonomously
performed by a robotic system:
The Picking Task consisted of moving 12 products from a
partially filled shelf, into the tote. Some target products could
be partially occluded or in contact with other products, but no
product would be fully occluded. Each of the 12 bins contained
exactly one target product as well as any number of non-target
products and every target product is only present in a single
bin. The tote is initially empty in this task.
The Stowing Task was the inverse to the Pick Task: moving
the contents of the tote (12 products) into the bins of the
shelf, which already contain some products. The products in
the tote could be partially or completely occluded below other
products. There was no target location for the products in the
tote, but different score for stowing them into more cluttered
bins. No restrictions were given on how to place the products
in the shelf bins, apart from not damaging them or the shelf
and not protruding more than 1cm.

In both tasks the robot had 15 minutes to fulfil the order,
which was specified by a task file, and report the final location
of all the products in an analogous output file. The task file
contained information of what products were located in which
bin or tote and it identified the target products. The task file did
not contain information about the physical location of products
within their respective container. The target products could be

Fig. 1. The products in the Amazon Picking Challenge 2016 in the tote and
in the bins of the shelf, from [12].

handled in any order and all the product could be moved to
any bin, as long as the final contents of each bin and the tote
were correctly reported in the output file. The performance
of the robot was evaluated by giving points for correctly
placed items and subtracting penalty points for dropping,
damaging or misplacing items (i.e. incorrectly reporting its
location in the output file). The amount of points for a specific
operation would depend on the difficulty of the object and
the cluttering of the bin. The time to accomplish the first
successful operation would be the tiebreaker.

B. Manipulation in unstructured environments

The ARC scenario is representative of the challenges in
handling applications in a warehouse or the factory floor.
The robot has to perform a few simple tasks in a closed
environment, but it is only semi-structured. Unlike dynamic,
open environments where autonomous robots have to cope
with unbounded levels of uncertainty, here it is limited. How-
ever, uncertainty is still present, in the target products char-
acteristics, their position and orientation, and the workspace
conditions.

The set of 39 product types used in the competition includes
books, cubic boxes, clothing, soft objects, and irregularly
shaped objects. They were chosen to be representative of the
products handled on a daily basis at an Amazon warehouse.
They presented realistic challenges for perception, grasping
and manipulation: reflective packaging, wide range of dimen-
sions, and weight or deformable shapes.

The products are stored mixed in any position and orien-
tation inside the shelf’s bins, partially occluding each other,
sometimes placed at the back. Bins could be too cluttered
even for a human hand to easily pick the target item. The
shelf construction with metal parts and cardboard divisions
resulted in wide tolerances and asymmetries. Besides, the
narrow opening of the bins (21 cm x 28 cm) compared to
their depth (43 cm) limited the manoeuvrability inside, and
caused difficult dark lighting conditions. The highly reflective
metal floor of the bins contributed to the challenges for any
vision system. In addition, the position of the entire shelf had
+/-3 cm tolerance.

The variety of shapes, sizes and weights of the objects
also posed an interesting challenge for object manipulation.
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This variety entailed studying and applying different grasp
synthesis methods such as pinch grasping [13], [14] and
suction grasping, successfully used in the previous edition of
ARC [11]. The limited space for manipulation discarded cage
grasping strategies. Regarding grasp synthesising, despite the
extended literature on grasping of unknown objects [15], the
fact that the products were known well in advance made fine-
tunned heuristics promise much better performance, as early
tests demonstrated.

III. LEVELS OF AUTOMATION

The performance and flexibility of a robotic application
depends on the assumptions and design decisions made to
address uncertainty. A proper understanding of these decisions
is specially important in robots that perform more traditional
automation tasks, but with challenging flexibility in not so-
well structured environments, such as the ARC. For this a
characterization of the solutions in levels of robot automation
is proposed, based on the experience gained developing Team
Delft’s robot. Our model is inspired by that of Parasuraman et
al. [16]. While that framework supports decisions about which
functions to automate, and to what extend, with a focus on
the human interaction factor, the model presented here applies
to the case of full automation of a function. It provides a
basis for deciding how to automate those functions, in view of
the uncertainty present and the reliability required. The main
criteria to differentiate automation solutions is the timing of
the information used to drive the behaviour of the system.
Assumptions are prior information that is used at design time
to determine a certain behaviour, reducing the flexibility of
the system, but generally optimizing its performance. On the
other hand, closed control loops in a robotic system use
runtime information to adapt the system behaviour to the
actual circumstances on-the-fly.

In traditional automation, the environment and the task are
fixed and assumed perfectly modelled. This allows to fix at
design time the sequence of operations and open-loop robot
motions. Uncertainty is reduced to minor allowed deviations
on product placement and geometry, which are accommodated
for by robust and compliant hardware designs. This ‘level 0’
automation allows to maximize the motion’s speed leading to
very high performance. However, it has no flexibility: robot’s
behaviour is fixed during design, no runtime information is
used to adapt to deviations.

Open-loop automation solutions typically include error han-
dling mechanisms, so that the robotic system can accommo-
date for foreseeable events during its design. These ‘level 1’
solutions introduce sensing capabilities in the system to verify
a posteriori the result of actions. For example in suction-based
object handling the pressure in the suction cup can be checked
to confirm a successful grasp or to detect dropping the object.

In ‘level 2’ of robot automation, more advanced and rich
perception is used to drive the robot behaviour at runtime,
following the so called sense-plan-act paradigm. The complete
sequence of control actions is computed based on a predefined
model of the world and initial run-time sensor information that
accommodates any run-time uncertainty. A typical example

is a vision-based solution that locates target objects. The
limitations of this approach are well known in robotics and
artificial intelligence fields [17].

In feedback control (‘level 3’), action is dynamically com-
puted at a certain frequency using runtime sensor information.
Often, the target variables cannot been sensed at the desired
frequency, or they are not directly accessible at all. In these
cases, an estimation is used to close a feedback loop at
runtime. The controller of a robot manipulator, closing a
control loop for its joint state, is an example of ‘level’ present
in Team Delft robot.

Finally, a ‘level 4’ solution uses predictions in addition to
the current sensor information to optimize its response to an
uncertain environment. This is the case in systems that use any
flavor of model predictive control [18], in which a more or less
complex model of the system dynamics is used to optimize
the control action based on the predicted evolution.

The selection of the level of automation for each specific
problem in a robot manipulation application implies a trade-
off between flexibility, performance, and resources. In the
following sections the Team Delft robot for the ARC 2016
is discussed, explaining the rationale for the different techno-
logical approaches chosen following the model of ‘levels of
automation’.

IV. ROBOTIC SYSTEM OVERVIEW

Based on the analysis of previous experiences in the ARC
[11], [2], Team Delft’s solution targeted three key performance
objectives to maximize scoring in the competition: be able
to complete all the tasks, robustness and speed. The design
approach to address them was to develop the robot automation
level more efficient considering the uncertainty challenges
in the tasks, and to reuse existing hardware and software
components.

A. System Requirements

The performance objectives were decomposed into specific
system requirements for robot manipulation. Completing the
picking and stowing tasks requires the robot to handle all the
products in any position in the shelf and the tote. This entails
the following requirements:
Req. 1: to recognize and locate any of the products in any
place inside the shelf or the tote.
Req. 2: to reach any location inside the bins with enough
manoeuvrability.
Req. 3: to achieve and hold a firm grasp on all different
products.

Robustness is a must in real-world applications that need to
perform with almost no downtime. In the competition only one
attempt2 was allowed for each task, so any failure leading to
the robot stopping or crashing is fatal. Speed is also critical for
production systems. In Team Delft’s strategy, speed allows the
robot to perform several attempts to pick a target difficult to

2A reset was allowed: the task could be restarted from the beginning but
with a penalty [12].
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Fig. 2. Team Delft robot setup in the APC workcell.

grasp, and also move other objects for clearance, during the 15
minutes allowed for each task. This simplifies the manipulation
actions needed, leading to a more robust system.

B. Robot Concept

Team Delft’s robotic system is shown in Fig. 2. It is based
on an industrial manipulator mounting a 3D camera to scan
the contents of the shelf’s bins and a custom, hybrid gripper
featuring a suction cup and a pinch mechanism. An additional
fixed camera allows scanning the tote contents. The selection
of this hardware will be justified together the explanation
of the main robot functionality each device supports, in
subsections IV-C, IV-D and IV-E.

The ARC competition requires the robot to operate au-
tonomously to complete tasks defined in a computer file that
defines the current inventory of the shelf and the tote, and,
for the pick task, the target product in each bin to be placed
in the tote. Team Delft’s solution for the picking and the
stowing tasks is to decompose them into a plan of pick&place
operations that is sequentially executed by the robot arm.

1) Task Planning: For the Picking Task, the picking order
of each target is computed to maximize scoring and minimize
risk, considering i) the points for each product, and ii) system’s
confidence to handle each product, from experimental results,
and iii) the need to move occluding objects (see rightmost
flow in Fig. 3). This way the plan of pick&place operation
for all targets in the task is created. The plan is updated at
the end of each operation according to its success or any
fallback triggered (see failures in the right side of Fig. 3),
as will be explained in section IV-F. For the stowing task, a
simple heuristic selects as a target the detected product that
is closer to the tote opening, since all the contents in the tote
have to be stowed.

2) Pick&place: The pick&place operations required to han-
dle the products in the competition have a fixed structure in
a closed, semi-structured environment: pick target X that is
located in bin Y or the tote, and place it on the tote or bin
Y’. Therefore a ‘level 2’ robot control solution was designed,

consisting of a sequence of actions that follows the sense-plan-
act paradigm. The general steps and the main actions depicted
in Fig. 3 are as follows:

Sense
The system uses the 3D camera information of the target’s
container (bin or tote) to: i) detect and estimate the 6D pose
of the item, and ii) obtain collision information of the container
to later plan the motions, in the form of a filtered Pointcloud
of the cluttering of the container. In the Pick Task scenario, the
robot has to previosuly move to obtain the camera information
for the target bin. Additionally, the actual position of the bin
is also estimated, for a more detailed collision model of the
environment. In the Stow task, a Pointcloud model of the tote
is used, since its pose is perfectly known.

Plan
Using the estimated pose of the target item and its known
characteristics, the system computes the grasping strategy and
a grasp candidate (a pose for the gripper to pick the object).
The sensed Pointcloud information is integrated in an octomap
with the known environment geometry, stored in the Universal
Robot Description Format (URDF) to generate a collision-free
plan to approach the grasp candidate pose, pick the product
and retreat from the shelf.

Act
The previous motion plan is executed as a feedforward action,
including gripper configuration and activation on the way to
pick the item. Pick success is confirmed with the pressure in
the suction cup (for suction-based grasps). If so, the robot
moves to drop the item in the tote using offline generated
trajectories.

Thanks to the structure of the environment, to place the
products a robot automation ‘level 0’ solution was designed
that uses pre-defined motions to drop them either in the tote
or the shelf’s bins in a safe manner to comply with the
competition rules. In the case of placing the items in the tote, it
is divided in 6 predefined drop locations, and the task planner
logic makes sure that: i) no heavy products are dropped were
fragile items have been places and ii) no more than 3 products
are dropped in the same location, so that the objects do not
protrude from the tote. In the case of moving occluding items
to another bin, the task planner logic selects the least cluttered
bin from those that no longer need to be accessed (to keep the
environment static). The robot moves to a fixed location in
that bin, making use of the assumption that thanks to gravity
any cluttering is in the lower part, and any standing items will
be toppled inwards.

Sections IV-C to IV-E describe the solutions designed for
all the robot capabilities required for the previous actions,
grouped into object detection and pose estimation, grasping
and robot motion, including the main hardware and software
components involved.

C. Vision-based Perception

To address Req. 1, the robot needs to recognize and locate
the objects captured by the camera, knowing what the object
is and where it locates in the image.
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Fig. 3. Schema of Team Delft’s sense-plan-act workflow for picking a product X from the shelf’s bin Y. The sense step consists of: a) detection of the target
item and estimation of its 6d pose, and b) obtain collision information inside the bin, in the form of a PointCloud.

1) Cameras: To scan the bin an industrial camera system
is mounted on the gripper. It includes a Ensenso N35 3D
camera that provides low noise Pointcloud data, and an IDS
UI-5240CP-C-HQ high-definition camera that provides RGB
images. An array of LEDs improves robustness to lighting
conditions. A similar system is fixed on a pole to scan the
tote.

2) Object Detection: The object detection module takes
RGB images as input and returns a list of the object proposals.
Each proposal contains the label and the location, determined
by a bounding box enclosing the object. The proposals are
ranked in descending order based on the confidences, varying
from 0 to 1. The proposal with the highest confidence for the
expected item was counted as the detected object.

One of the main difficulties for object detection is that each
instance varies significantly regarding size, shape, appearance,
poses, etc. The object detection module should be able to
recognize and locate the objects regardless of how objects from
one category differ visually. A model that has high capacity
and can learn from large-scale data is required. Deep Neural
Networks are renowned for it high capacity, especially the
Convolution Neural Networks (CNN) have recently shown
its ability to learn large-scale data efficiently, improving the
benchmark performance of large scale visual recognition prob-
lems significantly since 2012 [19], [20].

Girshick et. al. [21] adopted the Convolutional Networks
for classification, and selective search [22] for region pro-
posal, in their region-based Convolutional Networks (R-CNN)
framework, achieving a performance improvement by a large

margin. One of the limitations of their work is that it took
about 47 seconds3 to create the region proposals and predict
the object categories, for each image. Following studies [23],
[24] accelerated the processing cycle time to 198 milliseconds
by applying the CNN more efficiently, including extracting
convolutional features for the whole image and sharing CNN
for region proposal and classification. The resulting method is
referred to as Faster R-CNN[24], [20].

The significant processing speed acceleration of the Faster
R-CNN consolidates the basis of nearly real-time object detec-
tion in robotic applications. This is the reason Faster R-CNN
was adopted in Team Delft’s solution to detect objects in both
the shelf and the tote of the ARC.

Training a Faster R-CNN model requires a ground truth
data set, in this case RGB images annotated with the bounding
boxes and labels of detected objects. In the ARC setup, objects
were placed in two different scenes, either in a dark shelf bin
or a red tote. Therefore, two different models were trained to
detect objects in the two different scenes. A total of three sets
of RGB labeled images, were used for training:

Base Images of all the products were recorded automati-
cally. Objects were put on a rotating plate against a
monochrome background, and a camera was attached
to a robot arm, taking images from different angles.
Annotations were generated after automated object
segmentation by thresholding. Images were aug-

3All process timings run on one Nvidia K40 GPU (graphics processing
unit) overclocked to 875 MHz as provided in papers [23], [24].
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TABLE I
EVALUATION OF THE CONVOLUTIONAL NEURAL NETWORKS

Network Bin test mAP Tote test mAP

Base Model 16.1% 7.9%
Bin Model (bin data only) 82.9% -
Bin Model 85.7% -
Tote Model (tote data only) - 90.0%
Tote Model - 92.5%

mented by replacing the monochrome background
with random pictures after creating labels. This set
contains in total 20K images.

Bin Images were taken for objects randomly placed in
the bin. Annotations were created manually. This set
includes 672 images.

Tote Images were taken for objects randomly placed in
the tote. Annotations were created manually. This set
contains 459 images.

The pre-trained weights of the VGG net [25] were used
as initialization for the convolutional filters while the other
filters were initialized with small random values drawn from
a Gaussian distribution [26].

Given the three different sets of labeled images, five models
were trained in a two-step strategy:

Step 1 Trained the initialized model with all the images
from the Base set, obtaining a Base model.

Step 2 Fine-tuning the Base model with scene-specific im-
ages, the Bin set and the Tote set, obtaining scene-
specific models, a Bin model and a Tote model.

The first model is the Base model. For both the Bin and
Tote models, two different models were trained. One model
uses only the data from the respective environment (omitting
step 1 of the two-step strategy), whereas the second model
is obtained by refining the Base model with the environment
specific training set; applying both steps.

The trained models were tested using 10% of the Bin
set, and Tote set, respectively, as two test sets. The test
sets were excluded from the training procedure. An object
proposal was counted as correct if it had more than 50%
of the area overlapped with the corresponding annotation.
Average Precision (AP) were used to evaluate the ranked list
of object proposals for each item category, and the mean over
the 39 categories, known as Mean Average Precision (mAP),
were used as the performance measure of the models. The
Mean Average Precision varies from 0 to 1, and higher mAP
indicates that the predictions match better with the annotations.

The result of this evaluation can be seen in table I. From
this it is observed that the best results are obtained by refining
the generic Base model with environment specific data. The
Bin model was used in the ARC 2016 for the picking task and
the Tote model was used for the stowing task.

3) Object pose estimation: While object detection localizes
objects in 2D, handling the target objects requires knowing the
3D pose of the object with respect to the robot. The chosen
approach separates pose estimation in two stages: global pose
estimation and a local refinement step.

Global pose estimation was done using Super 4PCS [27].
Since this method compares a small subset of both a model
Pointcloud and the measured Pointcloud for congruency, it can
obtain a good global estimation of the object pose. This global
estimation is then used as an initial guess in applying Iterative
Closest Point (ICP) [28] for a close approximation.

For these methods, Pointclouds without color information
were used. While it has been suggested [27] that using color
information is possible in Super 4PCS, no analysis of its
effect on the pose estimation performance was reported in that
study. Furthermore it would have required obtaining accurate
colored Pointcloud models of the objects, while for most
objects a simple primitive shape can be used to generate a
Pointcloud model if color information is ignored. For some
more elaborately shaped objects (a pair of dog bones and a
utility brush for instance), a 3D scan without color information
has been used as a model.

It should be noted that the Super 4PCS method inherently
uses the 3D structure to obtain a pose estimation. Lack of
such structure in the observed Pointcloud leads to suboptimal
results. For example, observing only one face of a cuboid
object could lead to the wrong face of the model being
matched to the observation.

D. Grasping

Team Delft’s approach to grasping and manipulation was to
simplify the problem to a minimum set of action primitives,
relying on the following additional requirements:
Req. 4: a suitable grasp surface is always directly accessible
from the bin opening that allows to grasp and retreat holding
the product, and no complex manipulation inside the bin
or the tote is needed. This way the ‘level 2’ assumption of
environment invariance holds.
Req. 5: the system should be able to find a collision-free path
to grasp the product, and a retreat path holding the product.
Req. 6: the gripper is able to pick and robustly hold any
of the 39 product types, compensating for small deviations,
minor collisions of the held product, inertia and gravity
effects on grasp stability.

1) Gripper: A custom hybrid gripper was tailored to handle
all items in the competition (Req. 6). It includes a suction cup
based on low vacuum and high volume for robustness, and a
pinch mechanism for the two products difficult to grasp with
suction: a 3 pound dumbbell and a pencil holder made out of
wire mesh. The gripper’s 40cm length allows to reach all the
way inside the bins without the bulky robot wrist entering, and
its lean design facilitates manoeuvrability inside the reduced
space. Bulkines and resulting limited maneovrability inside the
bins was also the reason why robot hands were discarded. The
suction cup features a 90� rotation to provide an extra degree
of freedom. This allows using the front surface of the object
facing the robot for grasping, facilitating Req. 4.

2) Grasp Strategies: The grasping strategy is chosen at run-
time based on the type of product, its pose and the surrounding
cluttering, from these primitives: front suction, side or top
suction, and pinch. The chosen primitive is parametrized to
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(b) Front suction (d) Pinch(a) Top suction (c) Side suction

Fig. 4. The different grasp strategies possible with Team Delft’s custom
gripper.

the target product by computing the grasp candidate pose and
an associated manipulation plan, using a priori knowledge and
runtime information.

3) Grasp Synthesising: The grasp candidate is a pose that
if reached by its end-effector allows the robot to grasp the
product activating the gripper according to the chosen primi-
tive (by generating suction or the pinch mechanism). For non-
deformable products the grasp candidate is generated using
heuristics that store grasp possibilities for the different product
types, based on geometric primitives and the structure of the
workspace, as detailed in [29]. Since a 3D pose estimation
is not possible for deformable products, grasp candidates are
obtained using the surface normals of the detected object’s
Pointcloud, and ranked according to their distance to its
centroid.

E. Robot Motion

The motion module is responsible for moving the end-
effector to all the poses needed along the sense-plan-act
behaviour, fulfilling Req. 2 for reachability, Req. 5 for grasping
and the requirement for speed.

1) Robot: To choose a robot manipulator that could execute
all required motions, a workspace reachability analysis using
the MoveIt! [30] was conducted. The robotic system designed
consists of a 7 degrees of freedom SIA20F Motoman industrial
manipulator mounted on a rail perpendicular to the shelf’s
front. The resulting 8 degrees of freedom allows to reach all
the bins with enough manoeuverability.

The motion problem was simplified using two assumptions
about the workspace uncertainty:

1) outside the shelf the environment is static and known,
and the task involves a finite set of poses to scan the
bins and the tote, and to access them, so motions can
be pre-planned offline (‘level 0’ solution);

2) inside the shelf and the tote the environment is also static
but unknown. However, it has some structure due to:
the walls, the given condition of products not laying on
top of each other, gravity, and in the case of the shelf
the assumption of one surface accessible from the bin
opening.

2) Motions outside the shelf and tote: Using assumption
1) a ‘level 0’ solution was implemented to implement the
motions needed outside the shelf and tote. Around 30 end-
effector poses were pre-defined, and collision-free trajectories
between all of them were planned offline.

3) Manipulation Planning: Using the second assumption,
the manipulation strategy was designed from a motion perspec-
tive as a combination of linear segments to approach, contact,
lift and retreat. These segments are computed online from the
grasp candidate poses using cartesian planning. Collisions are
accounted for using the shelf’s or tote’s 3D model and online
information of the surroundings by generating an occupancy
octomap from the scanned Pointcloud.

4) Path Generation and Execution: Finally, the offline
trajectories and the manipulation segments are stitched into
a complete time parameterized motion plan. This process
optimizes the timely execution of the motions. It allows for
custom velocity scaling to adapt the motions to safely handle
the heavier products. This process also synchronizes along the
trajectory the timely configuration (to the desired strategy),
and later activation of the gripper to pick the target product,
and the verification of the pressure sensor in the gripper after
retreat. Finally, the resulting trajectory is executed by the robot
manipulator, also controlling the gripper.

F. Failure management
Special focus was given to the overall reliability of the

robotic system. The system can detect a set of failures during
the sense, plan and act phases and trigger fallbacks to prevent
a stall. For example, if the target product cannot be located,
or estimate its pose, different camera poses are tried. If the
problem persists it will postpone that target and move to the
next one. A failed suction grasp is detected by checking the
vacuum sealing after execution of the complete grasp and
retreat action. In that case, it is assumed that the item dropped
inside the bin and retries the pick later. If the vacuum seal is
broken during the placement in the tote, the item is reported to
be in the tote, since it can actually be the case, and there is no
gain for reporting dropped items. For a pinch grasp, the system
could only validate the complete pick and place operation by
checking the presence of the picked item in the image from
the tote.

V. DISCUSSION

The Amazon Robotics Challenge is a valuable benchmark
for robot manipulation solutions. It provides interesting indica-
tors to measure the advantages and limitations of the different
robotic solutions. Following we discuss the performance of
Team Delft robot using the automation levels framework
presented in section III and analysing the different trade-offs
of using run-time feedback or design assumptions to address
the uncertain conditions.

A. Evaluation
Table II summarises the results of Team Delft’s robot in

the competition to win both challenge tasks [29]. The best
scoring teams in the table shared some features, e.g. use of
industrial robot manipulators, 3D camera in-hand or hybrid
grippers, with preference for suction grasps. While NimbRo
developed a robot with simmilar grasping capabilities, their
solution was less robust, and partly relied on placing the tote



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2018.2800744, IEEE
Transactions on Industrial Informatics

8 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS. PREPRINT VERSION. ACCEPTED JANUARY, 2018

TABLE II
RESULT SUMMARY OF THE ARC 2016 FINALS.

Picking Task

Team Total
score

Points
item+bin

success
targets

misplaced
items

other
penalties

Team Delft 105 135 9 3 (-30) 0
PFN 105 130 9 1 (-10) -15
NimbRo Picking 97 152 10 4 (-40) -15
MIT 67 97 6 2 (-20) -10

Stowing Task
Team Delft 214 224 11 1 (-10) 0
NimbRo Picking 186 206 11 2 (-20) 0
MIT 164 164 9 0 0
PFN 161 191 10 3 (-30) 0

below the shelf to drag the products out of the bins. This trick
also allowed teams like NimbRo to re-try objects dropping
back to the tote during the stow task. However, this implied
score penalties as shown in Table II. Actually only Team Delft
in Table II did not rely on this “workaround”, but instead
achieved robust and fast pick&place by attempting only clear
picks, moving any occluding objects. In addition, Team Delft’s
operation maximized the bonus points that were given bsed
on the item handled and the filling of the bins, e.g. wiht the
selection the stowing bins (see column “Points item+bin” in
Table II).

The detailed analysis of performance in Table III shows that
the design achieved the system requirements targeted in speed
and reliability while addressing the uncertainty conditions
presented in section II-B. However, the system presented
some limitations that affected its performance specially in the
picking task.

1) Detect and locate all the products: The solution for
object detection based on deep learning proved highly reliable
and fast (avg. 150 ms). It is a ‘level 1’ solution that takes
additional images from fixed viewpoints on the fly if needed.
The solution is robust to varying light conditions, including
the dark locations at the back of the bins and the reflections
at the front due to products packaging and the metal floor, at
the cost of requiring large amounts of training data. On the
other hand, it is highly reconfigurable: training the model for
a new product requires only a few dozens of images and a
few hours. This makes this approach very attractive for tasks
where the arrangement of the products is unknown, but sample
information can be easily generated.

The pose estimation of the target based on Super 4PCS is
less reliable, and its speed had higher variance, due to which
a time limit to 4 s was added to trigger fallback mechanisms.
Speed could be improved with a GPU implementation of the
Super 4PCS algorithm. The main problem for the open-loop
solution implemented was the scarce Pointcloud information
obtained for certain situations, strongly affected by lighting
conditions and packaging reflections. The ‘level 1’ fallback
mechanism to take additional images from fixed locations was
not an improvement. A possible improved ‘level 2’ design
would use the information from an initial pose estimation
to plan a new camera pose. However, in many cases the
pose estimation error considered the target in impossible or

unreasonable orientations. A more promising enhancement is
then to use more application heuristics during design, for
example assuming that gravity limits the possible orientations
of an object.

2) Stable grasp for all products and orientations: Team
Delft’s grasping solution was able to pick all 39 items in
the 2016 competition, in most orientations and bin locations.
The ‘level 1’ solution to grasping and product handling, based
on a custom gripper, achieved a robust and fast performance
for most of the products. The high-flow, low-vacuum com-
bined with a compliant suction cup proved robust to different
product surfaces and misalignments (> 90% success rate).
Additionally, it embedded grasp success sensing, providing an
interesting standalone ‘level 1’ solution. The main problems
of the suction mechanism were: inadvertently grasping two
objects, and the stability of the grasp for large, heavy products.
The first problem could be improved by verifying the grasped
products with the tote camera. The second problem is partially
addressed by manipulation planning with custom heuristics to
orient the product after grasping.

The pinch mechanism is less reliable (< 50% success rate
for the dumbbell). Its lack of compliance demanded a higher
accuracy than that provided by the pose estimation module.
Additionally, it is an ‘level 0’ standalone solution with no
feedback on the success of the operation.

3) Reach and manoeuvre all locations: Robot motion is
critical in manipulation applications in relation to speed and
collisions. Regarding speed, the overall ‘level 2’ solution
designed allowed to optimize the robot motions during design,
achieving a high performance only limited by the grasp stabil-
ity and safety4. As an indicator, Team Delft robot achieved an
average cycle time of 35 s, compared to more than a minute
for the feedback-based winning solution in 2015 [11].

In relation to reliability, Team Delft solution combined
offline information in the 3D models of the workspace and the
runtime Pointcloud information from the 3D cameras to avoid
collisions. Avoiding collisions guarantees not modifying the
structure of the environment, thus facilitating the application
of an open-loop ‘level 2’ solution. However, it is more limited
for handling cluttered situations, where it can be unavoidable
to touch objects next to the target. Additionally, it is more
sensitive to perception errors and scarcity of data, as is the case
of the shelf, where a limited range of viewpoints is possible.

4) Overall Solution: The overall ‘level 2’ sense-plan-act
solution achieves a high-performance when the core assump-
tion of an accessible grasp surface holds. This is the case in
the stowing task, a standard bin picking application, thanks to
gravity and task conditions (workspace geometry and product
characteristics).

Bin cluttering presented the main difficulty to the ‘level
2’ approach, making the collision-free requirement hard to
address. Avoiding it by moving items around posed the dis-
advantage that an unknown number of pick and place actions
could be needed to remove all the objects occluding the grasp
of the target item. On the other hand, the simplification to a

4Due to the competition setup the robot speed limits were set to a safe 0.5
factor of its nominal maximum joint speed.
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TABLE III
SYSTEM PERFORMANCE SUMMARY

44 pick&place operations attempted in the Picking and Stowing finals.
38 operations on target items, and 6 to move occluding items.

Successful 25
11.35 s (avg) sense&plan
22.41 s (avg) act (robot motions)
33.76 s (avg) total pick&place execution time

Failed
recovered

3 target not detected or pose not estimated
10 no motion plan found
6 target not held after grasp

penalties 1 target dropped outside the bin
1 non-target shoved outside the bin

System fatal errors Stall condition due to no more feasible targets.
Emergency stop due to gripper crushing object.

‘level 2’ system using only two primitive actions allowed us to
optimize the required robot motions for speed, by exploiting
the structure of task and environment as described in section
IV-E.

Another disadvantage of our ‘level 2’ approach was the
limited compliance with runtime uncertainty and its need for
accuracy. The localization of the target products has to be
precise to 5 mm, as well as the collision information. The
hardware selection regarding the cameras and the gripper
design proved that it is critical to simplify the control solution.

In relation to workspace uncertainty, the solution proved
robust to deviations in the shelf’s geometry, they being due
to construction or to the 3 cm displacements allowed by the
competition rules. These uncertainties were compensated for
by the shelf pose estimation procedure performed during the
sense cycle.

5) Failure Management: The possible failures of the system
are: i) the product cannot be picked ii) product is dropped,
iii) critical collision leading to equipment or product damage.
These failures could arise from any of the core modules of the
Team Delft-APC system namely Vision, Grasping or Motion.
While exhaustive testing of all failure modes on the final
system was difficult to perform due to practical reasons, some
of the failures observed while testing and the actual run in the
final competition are listed in Table III.

The nature of the failures caused by the core module Vision
were fairly consistent in the products and the situation that
caused them. However, the failures caused by the core modules
Grasping and Motion were difficult to reproduce as they were
caused by inverse kinematic solutions that would put the
last few joints of the robot in a singular configuration while
performing specific grasps (such as Bubble mailer leaning on
the side walls of the top left or right corner bins). This was
mainly caused by the numerical optimization based TRAC-
IK solver used for the grasp motion planning. This non-
determinism could have perhaps been reduced by using a fixed
seed for the TRAC-IK solver, but, we did not have the time
to implement and test this solution before the challenge.

The error handling mechanisms described in IV-F provided
for reliability when the product cannot be picked, by either
retrying it under different conditions (new camera images),

or postponing that target. When the product is dropped,
appropriate action or reporting was coded using favorable
assumptions about the result of the action.

‘Level 1’ mechanisms for error handling specific to the
application are unavoidable. However, general methods and
tools that allow to capture them in a scalable and maintainable
way are critical, such as the state-machine tool SMACH used
by Team Delft.

B. Lessons Learned
Overall Team Delft’s approach to design the level of au-

tomation required for each problem proved to be successful,
outperforming concurring and previous editions’ entries in the
Amazon Robotics Challenge. The main lessons learned relate
to the value of open-loop solutions, how deep learning can
contribute to them, and the need for collisions in manipulation.

In semi-structured, closed environments, the proper com-
bination of open-loop solutions and hardware tailoring based
on adequate assumptions provides the best performance. An
exemplary case that proves that exploring simplifying hypoth-
esis with open-loop solutions is worthy are the deformable
products in the Amazon competition. Initially, they seemed
to pose problems to locate, given the lack of a 3D model
for them, and even more difficulties to manipulation planning.
However, detection worked flawlessly with enough training
data, and the compliant and powerful suction gripper made
precise localization and careful manipulation unnecessary.

To address the limited flexibility and corner cases, Team
Delft integrated two different solutions that exploit application
knowledge at design time to tackle runtime uncertainty. For
grasping, manipulation, and error handling, heuristics were
programmed. They provide a simple and powerful solution
easy to implement and inspect. However, their practical im-
plementation present important problems. First, they require
intensive work by experts. They are hardly reusable. Finally,
they do not scale: in complex applications such as the Amazon
Robotics Challenge, where there are many robot technologies
and components connected, modifying or adding new task-
level heuristics in the design becomes unmanageable. The
challenge remains to find practical ways to systematically
encode knowledge, something the AI and cognitive robotics
communities have been targeting for decades.

Deep learning techniques are a very promising solution
to automate the generation of application-specific solutions
embedding task-knowledge. Despite being an open-loop so-
lution, automated training allows to easily accommodate for
variations (bounded uncertainties), as well as to easily adapt it
to new products or environments. In Team Delft’s design, deep
learning proved a very reliable and performing solution for
object detection. Another entry in 2016 competition5, as well
as more recent results [31], [32] suggest that deep learning
techniques can be successfully applied to grasping. However,
the generation of training data in this case is very resource
consuming. An intermediate, more feasible solution could be
applying it to pose estimation.

5https://www.preferred-networks.jp/en/news/amazon-picking-challenge
result
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Grasping from the bin poses the more difficulties for Team
Delft’s open-loop solution. Main cause is the rejection of grasp
plans due to collisions. Many results suggest that grasping and
manipulation require to allow for contact, using techniques that
incorporate force/torque information [11]. Feedback solutions
seem unavoidable for successful manipulation in cluttered
environments. However, for improved performance it is de-
sirable to limit their scope in the robot control by combining
them with the better performing planning solutions. Current
robot motion planning based on joint configuration space
presents problems with grasp stability and does not allow for
more flexible online planning based on force/torque feedback.
Kinodynamic motion planning can overcome these limitations,
but more research is needed for it to become a practical and
feasible solution.

VI. CONCLUSION

This paper provides a practical discussion on the challenges
for industrial robot manipulation for product handling, based
on the experience of the authors developing the winning
solution in the Amazon Robotics Challenge 2016. From this
experience: 1) the specific task conditions should guide the
selection of the robotic solutions for an application, 2) under-
standing the characteristics of the solutions chosen and their
relation to the task’s conditions, embedded in multiple design
decisions and assumptions, is critical for the performance of
the overall system integrated from them, and 3) this charac-
terization can be done according to ‘robot automation levels’,
based on the use of information to address the task uncertain-
ties during the development and runtime of the robotic system.
The previous considerations guided the development of Team
Delft’s robotic system, which achieved an mean pick&place
time of 33.76 s, correctly handling 43 out of 44 targets in a
semi-structured environment.
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