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Abstract

In this paper we will argue that given certain conditions for the evolution of biological controllers, they will necessarily evolve in the direction of
incorporating consciousness capabilities. We will also see what are the necessary mechanics for the provision of these capabilities and extrapolate
this vision to the world of artificial systems.
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1. A bit of context

In this our excursion into the scientific world of awareness
so germane to the world of humanities,1 we observe with
surprise that there is still a widely extended perception of
consciousness as epiphenomenon, which, while mainly rooted
in philosophical analyses, is also apparently supported by
real, tangible experiments in well-controlled conditions (see
for example Dennet (1991), Libet, Wright, Feinstein, and
Pearl (1982), Pockett (2004) and Varela (1971)). Hence, we
may wonder why engineers should be interested in such a
phenomenon that is not yet fully understood and somehow not
even fully accepted.

In this paper we will argue for a precise interpretation
of consciousness – based on controller mechanics – that
renders it not only not epiphenomenal but also fully functional.
Even more, this interpretation leads to the conclusion
that consciousness necessarily emerges from certain, not
excessively complex, circumstances in the dwelling of
cognitive agents.

A characterisation of cognitive control will be needed as a
base support for this argument; and from this initial relatively
simple setting, the unavoidable arrow of evolution will render
entities that are not only conscious but also necessarily self-
conscious.
∗ Corresponding author.
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1 Humanities in Snow’s sense (Snow, 1969).
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This analysis will provide a stance for the analysis of
the phenomenon of consciousness in cognitive agents that is
fully in-line with fashionable buzzwords like situatedness and
embodiment.

In the case of technical systems, evolutionary pressure also
operates in their evolution. Not at the level of individual
machines but at the human-mediated level of product lines
and product families (individual machines generally lacking the
necessary replicatory capacities for selfish gene evolution). This
implies that, sooner or later, if the initial conditions hold in this
context, consciousness will be a necessarily appearing trait of
sophisticated machines. This is where we are: identifying the
core mechanics and application constraints for the realisation of
consciousness capabilities in next generation technical systems.
This will imply, necessarily, the sound characterisation of the
expected benefits from making a machine conscious.

2. The modelling of the brain

2.1. The modelling principle

One of the central issues proposed by the research
community is the question of existence of general principles
for cognitive systems and of consciousness in particular
(Aleksander & Dunmall, 2003). These are for example the
topics of discussion formulated by Taylor in a proposal for a
special session on ICANN 2007:

– General principles for cognitive systems;
– The pros and cons of embodiment for cognitive systems;
– The desirability or otherwise of guidance from the brain;
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– Specific cognitive system designs and their powers;
– Embodied cognitive systems in robot platforms and

demonstrations;
– The best future pathways for the development of cognitive

systems.

Proposing some cognitive principles up to the level of
consciousness will be the objective of this paper. Let us start
with a first one on the nature of cognition:

Principle 1 (Model-based Cognition). A system is said to
be cognitive if it exploits models of other systems in their
interaction with them.

This principle in practice equates knowledge with models,
bypassing the problems derived from the conventional
epistemological interpretation of knowledge as justified true
belief (Gettier, 1963) and embracing a Dretskean interpretation
where justification and truth are precisely defined in terms
of a strict modelling relation (Rosen, 1985).2 Obviously, this
principle takes us to the broadly debated interpretation of
cognition as centered around representation, but with a tint; that
of the predictive and postdictive capabilities derived from the
execution of such a model.

In what follows, just to avoid confusion, we will try to
reserve the use of the term system for the cognitive system
(unless explicitly stated otherwise) and use the term object for
the system that the cognitive system interacts with (even when
in some cases this one may be also cognitive).

Obviously, that the mind uses models is not a new
theory. The model-based theory of mind can be traced back
in many disciplines and the topic of mental models have
been a classic approach to the study of mind (Craik, 1943;
Gentner & Stevens, 1983) but this has just had an aura of
metaphorical argumentation (Johnson, 1987) because of the
lack of formalisation of the concept of model and the less than
rigorous approach to the study of its use in the generation of
mental activity.

Closer approaches are for example the emulation theory
of representation of Grush (1995) or the model-based
sensory–motor integration theory of Wolpert, Ghahramani, and
Jordan (1995). Grush proposed the similar idea that the brain
represents external-to-mind things, such as the body and the
environment, by constructing, maintaining, and using models of
them. Wolpert addresses the hypothesis that the central nervous
system internally models and simulates the dynamic behavior
of the motor system in planning, control, and learning.

We think that we can go beyond using the concept of model-
based-mind as metaphor or as de facto contingent realizations
found in biological brains to the more strong claim that minds
are necessarily model-based and that evolutionary pressure on
them will necessarily lead to consciousness. This article is just
one step in this direction.
2 The truth of a piece of information included in a model is not just its fitness
into the model – e.g. a perspective held by social constructivists – but in terms
of the establishment of isomorphims between the model and the modelled.
2.2. On models

This definition of cognition as model-based behavior may
sound too strict to be of general applicability; in particular it
seems not to fit simple cognitive processes (e.g. it seems that
we can have a stimulus input without having a model of it).
However, if we carefully analyse these processes we will find
isomorphisms between information structures in the system’s
processes – e.g. a sense – and the external reality – the sensed
– that are necessary for the process to be successful.

These information structures may be explicit and directly
identifiable in their isomorphisms or may be extremely difficult
to tell apart. Models will have many forms and in many cases
they may even be fully integrated – collapsed – into the very
mechanisms that exploit them. The model information in this
case is captured in the very structure of the cognitive process.
Reading an effective cognitive system tells us a lot about its
surrounding reality.

The discussion of what is a the proper charaterisation of
the concept of model is also very old and plenty of clever
insights as that one of George Box: “Essentially, all models are
wrong but some are useful” (Box & Draper, 1987). It is this
model usefulness which gives adaptive value to cognition as
demonstrated by Conant and Ashby (1970).

There are plenty of references on modelling theory, mostly
centered in the domain of simulation (Cellier, 1991; Zeigler,
Kim, & Praehofer, 2000) but it is more relevant for the vision
defended here, the perspective from the domains of systems the-
ory (Klir, 2001) and theoretical biology (Rosen, 1991, 1993).

This last cited one gives us a definition of model in terms
of a modelling relation that fits the perspective defended in
this article: a system A is in a modelling relation with another
system B – i.e. is a model of it – if the entailments in model
A can be mapped to entailments in system B. In the case of
cognitive systems, model A will be abstract and stored in the
mind or the body of the cognitive agent and system B will be
part of its surrounding reality.

We must bear in mind, however, that models may
vary widely in terms of purpose, detail, completeness,
implementation, etc. A model will represent only those object
traits that are relevant for the purpose of the model and this
representation may be not only not explicit, but fully fused with
the model exploitation mechanism.

2.3. Relations with other traits

Principle 1 grounds some common conceptions about
cognitive systems; obviously the most important is the question
of representation. A cognitive system – by definition of
cognition – necessarily represents other systems. Even more,
these representations must have deep isomorphisms with
the represented objects so the cognitive system can exploit
formal entailments in its models to compute entailments in
the modelled object in order to maximise the utility of the
interaction (more on this in Section 3). Paraphrasing what
Conant and Ashby clearly stated (Conant & Ashby, 1970) –
every good regulator must contain a model of the system it is
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controlling – we can say that every well-performing cognitive
system must contain a model of the objects it is interacting with.

Many other core issues of cognitive systems are addressed
by Principle 1. Two quite fashionable these days are the
questions of situatedness – cognition is necessarily interactive
with an external world – and embodiment – the necessary
separation of the agent body from the rest as defined by the
interaction boundary. Both are duly addressed by the modelling
perspective of Principle 1 even when they are not as necessarily
crisp as they may appear to roboticists because the model can
obviously represent uncertainty and vagueness, hence being
able to handle even blurred bodies and fuzzy situations (see
Fig. 1).

2.4. On model generation

Other so-called cognitive traits are left out of this picture of
cognitive systems. Model-based – cognitive – systems need not
necessarily be learning systems – even while learning will be
a very common procedure for model generation. A cognitive
system may operate using a static model – coming from any
source – as long as it is considered valid; i.e. as long as the
modelling relation with the external object still holds.

Obviously, from the consideration of how the cognitive
system becomes cognitive or maintains its cognitive capability,
learning becomes crucial. Somehow the models must be put
there, in the mind of the cognitive system. In general – not just
in the case of biosystems – the core infrastructures for model
construction fall into three categories:

Built-ins: In the sense described by Conant and Ashby (1970),
our feeding, homeostatic and kinestatic mechanisms
contain models of the surrounding reality (e.g. genes
codifying chemical receptors for the nose).

Learned: The very subject matter of learning from experience.
Cultural: The well-known topic of memetics (Blackmore,

1999; Dawkins, 1976) or – more visually shocking –
of Trinity “learning” helicopter piloting expertise in
Wachowskys’ Matrix.3

The learning and cultural mechanisms have the extremely
interesting property of being open ended. In particular, cultural
model transmission is a form of extended learning, where the
cognitive system downloads models learned by others hence
reaching levels of model complexity and perfection that are
impossible for an isolated agent.4

In biological systems, the substrate for learning is mostly
neural tissue. Neural networks are universal approximators that
can be tuned to model any concrete object or objects+relations
set. This property of universal approximation combined with
the potential for unsupervised learning make the neural soup
a perfect candidate for model bootstrapping and continuous
tuning. The neural net is a universal approximator; the neural
tissue organised as brain is a universal modeller.
3 Supervised learning may be considered a hybrid of cultural and learned
processes.

4 Indeed this is, plainly, the phenomenon of science.
These are also the properties that are sought in the field
of artificial neural networks. It is not necessary to recall here
the ample capacities that neural networks – both artificial
and natural – have shown concerning model learning. We
may wonder to what extent model learning of an external
reality can be equated to the advances in modelling external
realities demonstrated in the so-called hard-sciences (deep, first
principles models).

What is philosophically interesting in this process of
scientific model construction is the fact that reality seems
to have a mathematical-relational structure that enables the
distillation of progressively precise models in closed analytical
forms Wigner (1960).

We may think that culturally learnt first principles models5

are better than neural network approximative modelling6; there
are cases of exact convergence of both modelling approaches
but there are also cases where the mathematical shape of the
principles limits their applicability to certain classes of systems.

For example, in the field of model creation for control
purposes, artificial neural networks have been compared
favourably, in certain settings, with first principles models in the
implementation of nonlinear multivariable predictive control
(Henriques, Gil, Dourado, & Duarte-Ramos, 2002). This neural
network approach uses a recurrent Elman network for capturing
the plant’s dynamics, being the learning stage implemented on-
line using a modified version of the back-propagation through
time algorithm (Elman, 1990; Rumelhart, Hinton, & Williams,
1986).

All these analyses take us to the formulation of a second
principle of cognitive system construction:

Principle 2 (Model Isomorphism). An embodied, situated,
cognitive system is as good as its internalised models are.

Model quality is measured in terms of some definable
isomorphism with the modelled system as established by the
modelling relation. Let us see why all this digression on
model learning and quality is relevant for the consciousness
endeavour.

3. Reactive vs anticipatory control

Many control mechanisms follow the well-known error-
feedback paradigm. This control structure is so simple and
robust that almost all control loops are based on this approach.
The strategy is simple and extremely effective (Wiener, 1961):
measure the difference between what we want and what we
have and make corrections based on this difference (see Fig. 2).

These controllers are very effective but have a serious
drawback: they are always behind the plant, i.e. they cannot
make the plant strictly follow a reference signal without a
delay (except for special plants in special circumstances). These
controllers just act as reaction to plant output diverting from
5 Only geniuses do incorporate first principles models by autonomous
learning.

6 A similar problem to that of having symbolic representations in neural
tissue.
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Fig. 1. The cognitive relations of a system with an object are mediated by a
model of the object.

Fig. 2. Feedback controllers measure the difference (error) between what we
want (reference) and what we have (output) and make corrections (control)
based on this difference.

what is desired (errors); so they will wait to act until output
error is significant.

In order to have the plant in a certain state at a defined time,
we need other, more powerful approaches that can anticipate
error and prevent it. Due to the inherent dynamics of the plant,
the only possibility of acting to make it reach a final state s f at
t f from an initial state si at ti is to act at ta before t f .

This kind of control is anticipatory in this strict sense of
(ta < t f ).7 The determination of the action cannot come from
the final state (as with classical error-feedback) because of
anticipation and we need an estimate of this state ŝ f at time
ta .

These two alternative approaches were described by Conant
(1969) as error-controlled regulation and cause-controlled
regulation. The advantage of this second approach is that in
certain conditions, it is often possible for the regulation to
be completely successful at maintaining the proper outcome.
Needless to say is that due to the non-identity between model
and reality, this last one may depart from what the model says.
In these conditions only error-driven control will be able to
eliminate the error. This is the reason why, in real industrial
practice, model-based controllers are implemented as mixed
model-driven and error-driven controllers.

The previous analysis take us into the formulation of another
principle:
7 This could be seen as acausal because the cause of the action – final cause
in Aristotelian sense – is the final state s f , that is a future state.
Principle 3 (Anticipatory Behavior). Except in degenerate
cases, maximal timely performance can only be achieved using
predictive models.

These predictive models can be explicit or implicit in
the proper machinery of the action generation mechanism
(Camacho & Bordons, 2007). Obviously the degree to which
a particular part of reality can be included in a model will
depend on the possibility of establishing the adequate mappings
from/to reality to/from model and the isomorphims between
entailments at the model level and at the reality level (according
to a particular model exploitation policy). The problems
associated with inferred model quality have been widely
studied in relation with properties of statistical modelling,
where we seek a good model to approximate the effects or
factors supported by the empirical data in the recognition that
the model cannot fully capture reality (Burnham & Anderson,
2004). This is also the world of systems identification but in this
case, the target model typically belongs to a very reduced and
precise class of models (Ljung, 1998; Nelles, 2000).

4. Integrated cognitive control

Reactive and anticipatory control are the core building
blocks of complex controllers. Reactive controllers are simpler
and more easily tuneable. These are the reasons for being
the most used both in biological systems (they are easily
evolvable) and technical systems (they are easier to design and
implement).

Complex controllers organise control loops in hierarchi-
cal/heterarchical arrangements (see Fig. 3) that span sev-
eral dimensions: temporal, knowledge, abstraction, function,
paradigm, etc. (Sanz, 1990). These organisational aspects lead
to the functional differences offered by the different architec-
tures (in the line of Dennet’s skinnerian/popperian/gregorian
creatures (Dennett, 1996)).

In the performance of any task by an intelligent agent
there are three aspects of relevance: the task itself, the agent
performing the task and the environment where the task is being
performed (Sanz, Matı́a, & Galán, 2000). In the case of natural
systems the separation between task and agent is not easy to do,
but in the case of technical systems this separation is clearer if
we analyse them from the perspective of artificiality (Simon,
1981). Artificial systems are made on purpose and the task
always comes from outside of them: the owner.

The knowledge content of the models in highly autonomous
cognitive controllers should include the three aspects: system,
task and environment. Depending on the situation in the control
hierarchy, models may refer to particular subsets of these
aspects (e.g. models used in intelligent sensors do address only
a limited part of the system environment; just environmental
factors surrounding the sensor).

System cohesion may be threatened in evolutionary
terms and its preservation becomes a critical integrational
requirement. The problem of model coherence across the
different subsystems in a complex control hierarchy is a critical
aspect that is gaining increased relevance due to the new
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Fig. 3. Complex cognitive systems in integrated control architectures need to exploit models in the performance of tasks at different levels of abstraction; from the
immediate reaction to environment changes to the strategic decision making it relevant for the long term performance of the system.
component-based strategies for system construction. In the
case of biological systems and unified engineering artificial
systems the core ontology – whether explicit or assumed –
used in the construction of the different elements is the same.
But, in systems aggregated from components coming from
different fabrication processes, ontology mismatches produce
undesirable emergent phenomena that lead to faults and even
loss of system viability. This is clear in biological systems
(e.g. immunity-related phenomena) but is just becoming clear
in complex technical systems during recent times (Horn, 2001).

This analysis lead us to formulate an additional principle of
complex cognitive systems:

Principle 4 (Unified Cognitive Action Generation). Generat-
ing action based on an unified model of task, environment and
self is the way for performance maximisation.

Modelling the task is, in general, the easiest part.8 This has
been one of the traditional focus points of classic AI (obviously
with the associated problem solving methods).

Modelling the environment in control systems has been
generally done up to the extent of addressing the interference
it produces in the performance of the task. This can be as
simple as statistically modelling an interfering disturbance in
SISO controllers (see Fig. 2) or as complex as simultaneous
localisation and mapping in autonomous mobile robotics.

The question of modelling the system is trickier and will
be the main focus of the rest of this paper. Let us say that
8 But representing the task in the internalised model can be extremely
complex when task specification comes in natural language.
in conventional analyses of control systems these realisational
aspects are commonly neglected or reduced to considerations
concerning design constraints derived from implementation
limitations. The issue of embedding system models – i.e. of
the system knowing about its own body – has been raised in
many contexts but got wider audience in relation with robotics
embodiment considerations (Chrisley & Ziemke, 2002).

5. The perceiving agent

As deeply analysed by López (2007) there are strong
differences between sensing and perceiving, related to the
expectation and model-drivenness of this last one.

The perceptual process is structured as a potentially complex
pipeline of two classes of processes that we could describe as
sensor-driven and model-driven. The perceptual pipeline can
affect the perceiving system in two ways: implicitly, through
changes in operational states of other subsystems; and explicitly
through cognitive integration of what has been perceived into
integrated representations.

This unified understanding of perception as a model-
driven process (López, Sanz, & Bermejo, 2007) leads to the
introduction of a new principle:

Principle 5 (Model-driven Perception). Perception is the
continuous update of the integrated models used by the agent in
a model-based cognitive control architecture by means of real-
time sensorial information.

This principle implies that the result of perception is not a
scattered series of independent percepts, but these percepts are
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9 See for example Gallagher and Shear (2000) for philosophical, cognitive
science perspectives and Kircher and David (2003) for neuroscience and
psychology ones.
Fig. 4. System perception implies the continuous update of the models that the
system is employing in the generation of behavior.

Fig. 5. System self-awareness – consciousness – implies the continuous
update and meaning generation of a behavior-supporting model that includes
a submodel of the very agent generating the behavior (apart from a model of
the model of the object).

fully incorporated into an integrated model (see Fig. 4). This
means that it is possible to sense without actually perceiving;
e.g. if the cognitive – i.e. model-driven – sensory processing
fails in the integration.

To be integrable, the percept must follow some rules that
are captured both in the mechanics of cognitive perception
and in the set of referents used in the perception process. The
mechanics typically will form part of the permanent structure of
the agent while some of the referents may be part of its program
(see Klir (1969) for details on the duality structure/program).

Even more, the perception mechanism is not restricted
to process information coming from the environment of the
perceiving system but can exploit also information coming from
the inside of the system. Here authors will typically talk about
two classes of preception, propioception – the sensing of the
body – and metaperception – the sensing of the mind – but
both are, senso stricto, the same class of perceptual processes.
This unified perspective implies that for explicit perception to
happen in the inner environment, there must be a model where
percepts are to be integrated. These models obviously constitute
the very core of self.

6. The emergence of self

As was mentioned before, maintaining system cohesion
becomes a critical challenge in the evolutionary trajectory of a
cognitive system. From this perspective, the analysis proceeds
in a similar way: if model-based behavior gives adaptive value
to a system interacting with an object, it will give also value
when the object modelled is the system itself. This gives rise
to metacognitition in the form of metacontrol loops that will
improve operation of the system overall.

Apart from the many efforts in the analysis of reflective
mental processes in biological systems that we are not going
to analyse in detail here,9 there are also many research threads
that are leading to systematically addressing the question of
embedding self-models into technical systems. Some of them
are:

– System fault-tolerance has been addressed by means
of replication of components to avoid single critical
failure points; but the determination of faulty states to
trigger re-configuration has been a problem of increasing
importance in correlation with increased system complexity.
Fault detection and isolation methods have developed
sophisticated model-based reasoning mechanics to perform
these tasks. The models used, however, are specifically
tailored to the task – a common problem elsewhere.

– Cognitive systems research has put consciousness back into
the agenda after many years of ostracism (Mandler, 1975)
and hence it is addressing the question of computer-based
model building of this phenomenon.

– Information systems security – regarding human intrusion
and the several varieties of exo-code – has become
concerned about the question of self/nonself distinction in
ICT systems (Kennedy, 2003).

– Information systems exploitation is fighting the scalability
problem in maintenance tasks trying to mimic the scalable
organisation of biological systems (Horn, 2001).
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10 Retrospective prophecy in the words of Huxley (1880).
In our context of, control systems, our main concern is not
of human mimicking or reduction of cost of ownership. The
question is more immediate and basic: system robustness.

There are many technical systems that we depend upon:
from the electrical networks, to the embodied pacemakers or
ESPs in our cars. Dependability is a critical issue that is being
hampered by the increased complexity of individual systems
and from emergent phenomena in interconnected ones.

The justifiable quest for methods for managing reasoning
about selves in this context is driven by the desire of
moving responsibility for system robustness from the human
engineering and operation team to the system itself. This is also
the rationale behind the autonomic computing movement but
in our case the problem is much harder as the bodies of our
machines are deeply embedded in the physics of the world.

But the rationale for having self-models is even deeper
than that: if model-based control overpasses in capabilities
to those of error-based control, the strategy to follow in
the global governing of a concrete embedded system is not
just recognising departure from setpoints but anticipating the
behavior emerging from the interaction of the system with it
surrounding reality.

Hence the step from control systems that just exploit models
of the object, to control systems that exploit models of the pair
system + object is a necessary one in the ladder of increased
performance and robustness. This step is also observable in
biological systems and while there are still loads of unsolved
issues around, the core role that “self” plays in the generation
of sophisticated behavior is undeniable. Indeed, part of the
importance of self-consciousness is related to distinguishing
oneself from the environment in this class of models (e.g.
for action/agency attribution in critical, bootstrapping learning
processes).

7. Stepping to awareness and consciousness

Our strategy for consciousness research is not following
Alexander’s approach of axiomatising consciousness (i.e.
searching for a complex predicate to be accepted by the
community) but of analysing and formalising the core issues
and mechanisms involved (and addressed in the principles on
cognitive control exposed so far). The reason is simple; while
the axiomatisation process is important for clarifying the issues,
it may give rise to a receding horizon phenomenon similar to
what happened to AI in the eighties. This not happening, both
approaches should lead to the very same end.

7.1. Defining awareness

From the analysis of integrated cognitive controllers given
in the previous sections we can try to formalise some
consciousness aspects. We will make a distinction between
awareness and consciousness, reserving the C-word for systems
self-awareness.

Principle 6 (System Awareness). A system is aware if it is
continuously perceiving and generating meaning from the
continuously updated models.
The term meaning was introduced in this principle to define
awareness and this looks like eluding the core definitional
problem. However, the word meaning implies that the main
difference between perception and awareness is the addition
to the perceptual mechanics of a certain value system in the
global system process. So we can say that awareness implies
the perception of value to the system from its sensory flow.

The updated integrated model produced by perception is
evaluated in terms of a value system not only in the present state
of affairs but in the potential – future and past10 – consequences
derived from this state of affairs. Awareness implies the set
partitioning of predicted futures and postdicted pasts by a value
function. This partitioning we call meaning of the update to the
model. In this context of interpretation of the term meaning,
we conclude that only pieces of information that are model-
integrable can have meaning, because for others, we cannot
compute futures nor pasts, less their value.

System perception implies the continuous update of the
models that the system is employing in the generation of
behavior; but this continuous update is not just keeping in mind
an updated picture of the status of part of the environment –
like a photograph – but continuously restructuring and retuning
the dynamical model of the object used in the action generation
process (see Fig. 5).

System awareness requires the additional steps to automati-
cally predict and evaluate. While many researchers claim for a –
necessary – sensory–motor profile of awareness and conscious-
ness, action is not necessary for the definition of awareness;
but obviously when the models are used for action selection
and built by a process of sensory–motor interaction, action be-
comes critical for the awareness architecture; but models can
be built using other methods (see Section 2.4) and this will be
more manifested in artificial systems.

7.2. Defining consciousness

When the target of the awareness mechanism is the aware
system itself, consciousness happens:

Principle 7 (System Self-awareness/Consciousness). A system
is conscious if it is continuously generating meanings from
continuously updated self-models in a model-based cognitive
control architecture.

System self-awareness – consciousness – just implies
that the continuous model update includes the updating of
submodels about the system itself that are being evaluated. The
models of the supersystem – system + object – are used in
the model-based generation of system behavior. So the process
of behavior generation is explicitly represented in the mind
of the behaving agent as driven by a value system. In this
sense the interpretation of consciousness that we propose here
depart from higher-order theories of consciousness (Kriegel &
Williford, 2006; Rosenthal, 2005) in the fact that self-awareness
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is not just higher-order perception. Meaning generation is
lacking in this last one.

Another question of extreme relevance is the maximally
deep integration of the model and metamodel. As Kriegel
(2006) argues, higher-order monitoring theory makes the
monitoring state and the monitored state logically independent
with a mere contingent connection. We are more in the line of
Kriegel same-order monitoring theory that argues for a core
non-contingent relation between the monitoring state and the
monitored state.

One big difference between being aware and being
conscious comes from the capability of action attribution to the
system itself thanks to the capability of making a distinction
between self and the rest of the world.11 This implies that
a conscious agent can effectively understand – determine
the meaning – the effect of its own actions (computing the
differential value derived from self-generated actions, i.e. how
its own actions change the future).

Even more, conscious agents can be made responsible and
react to past actions by means of retrospectively computing
values. So, a conscious agent will be able to understand what
has been its role in reaching the actual state of affairs.

This appreciation of the coupling of consciousness to
value systems is also being done in biological studies of
consciousness. Let us quote Edelman (2006) at this point:

Consciousness appeared in vertebrate evolution when reentrant
connections in the thalamocortical system arose to link anterior
memory systems dealing with value to the more posterior
cortical systems devoted to perception. The result was an
enormous increase in discriminatory power resulting from
myriad integrations among the reentrant circuits comprising
this dynamic core.

7.3. Addressing Aleksander’s five axioms

Being conscious (continuously updating and computing
meaning from world-self-models in a model-based cognitive
control loop) has some implications that we can analyse in
the context of Aleksander’s five axioms for consciousness
(Aleksander & Dunmall, 2003) regarding a system A in a
world S:

Axiom 1 (Depiction). “A has perceptual states that depict parts
of S.” The model of S that A has is continuously updated and
contains a deep structure that makes it a depiction of S.

Axiom 2 (Imagination). “A has internal imaginational states
that recall parts of S or fabricate S-like sensations.” Models
are used in predictive causal exploitation engines that may be
used to predict, postdict or perform counterfactual analyses of
what-if situations.
11 Obviously, even while we argued for awareness/consciousness as a purely
input, perceptual process, these associations with action processes links
consciousness with action generation and even with system’s ethics.
Axiom 3 (Attention). “A is capable of selecting which parts
of S to depict or what to imagine.” Effective use of scarce
reasoning and metareasoning resources would imply that the
system has to select part of the whole spectrum of awareness
flow for further analysis.

Axiom 4 (Planning). “A has means of control over imagina-
tional state sequences to plan actions.” The structure of the cog-
nitive system based on Principles 1–6 implements a metacon-
trol schema with full anticipatory capabilities for future action
generation.

Axiom 5 (Emotion). “A has additional affective states that
evaluate planned actions and determine the ensuing action.”
Utility functions at metalevels are used to decide between
alternative control strategies.

8. Conclusions

This strategy of control based on self-models can be applied
recursively and have metacontrol systems based on recursively
applying the model-based machine structure. This is obviously
related to Sloman and Chrisley’s vision on virtual machines
and consciousness (Sloman & Chrisley, 2003). In our model,
however, passing from the first level to the next ones, something
interesting happens. As Gell-Mann (2001) suggests:

“At successive levels, it is the availability of similar
mathematical descriptions from related problems that makes
the next step appear with simplicity and elegance.”

Successive levels may have self-similar structures – even
when the concrete realisations may appear entirely different
– and hence it is possible to think on closing the progressive
recursiveness if the model of the metalevel is able to capture
its own core structure; i.e. a particular control level is able
to reason about itself as a metalevel controller (this is what
is proposed by Kriegel (2006)). The system then becomes
cognitively closed and the metareasoning can progress ad
infinitum – up to the limits of resources – without the need for
new implementational substrates.

As final conclusions of this paper, let us comment on some of
the proposed focus points suggested by Taylor and mentioned
in Section 2.1:

1. General principles for cognitive systems. Some proposals for
principles are introduced in this paper. All of them centered
around the issue of model-based action generation up to the
level of reflective, model-based action.

2. The pros and cons of embodiment for cognitive systems.
From the reasons shown above, cognitive systems are
necessarily situated and are necessarily embodied to the
extent of the action generation resources and the self-
awareness capabilities necessary for unified cognitive action
generation (which is necessary for preserving system
cohesion).

3. The desirability or otherwise of guidance from the brain. The
brain demonstrates the effectivity of the principles shown
above. This does not imply that building direct copies of the
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brain is the best approach but extracting structural patterns
that can be analysed formally.

4. Specific cognitive system designs and their powers. We
have summarily analysed three cognitive systems designs –
cognitive, metacognitive and reflective – and have argued
for the possibility of closing the list of progressively meta
structures at this last one.

5. The best future pathways for the development of cognitive
systems. Explore the issue of cognitive architectures based
on hierarchical unified modelling of the system/object
structures.
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