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1 Introduction

From the initial, old-age considerations on the nature of mind many very different
approaches have emerged. Of special relevance have been the so-called dualist
approaches where mind and body have had strongly different aspects and even
natures. In this dualistic context for understanding thought and life, the problem
has always been how these two realms of being —the physical and the mental—
could have any collaboration at all. The mind-body problem was served.

The embodied cognition movement —if we may use this expression— tries to
reconcile the apparently multiple quality (duality & unity at the same time sound
kind of religious) by means of analysing the ways in which the body may affect
cognition: supporting, raising, sustaining, shaping, etc. Too many terms for a re-
lation that for sure will be much more simple than usually thought or described
in excessively lengthy texts. There’s nothing to reconcile. Mind and body can’t be
separated because cognitive agents do think with the body.

We can say that the mind-body problem is not a problem of minds and bodies in
the world —i.e. a physical problem— but a just an artificial, conceptual problem in
the minds of the philosophers-scientists. The problem is not that minds and bodies
are separate entities but that what is separated are the mental concepts using in
thinking about them; i.e. that most thinkers use to think about minds and bodies
as ontologically fully separated entities. But they are not. Minds can be reduced to
bodies because they’re just processes running on them.

The approach that we propose may be considered very similar to conventional
embodiment or may be perceived as completely apart from embodied cognition



and full of panpsychism. There are no minds without bodies and there are no bod-
ies without minds —obviously ranging from the maximally complex to the practi-
cally inexistent. There are complexity ranges in all dimensions and cognitive agents
go from the simple to the complex in both bodily and mental aspects.

2 Separating mind and body

Following the former analysis, we can say that the correct wording is not that
the mind does emerge-from/is-supported-by/is-shaped-by bodily processes but that indeed,
those bodily processes are the mind itself. This may sound obvious for the processes
going on inside the brain and leads to the simple identification of the mind with
whatever the brain does. With “bodily processes” we are not only referring to
those processes happening in the brain but, perhaps in the line of artificial life, to
all those information-centric processes that constitute the very inner workings of
the hierarchical structures of life.

All orbit around organic modularity (Callebaut and Rasskin-Gutman, 2005) and
the robust provision of functions by the different subsystems that constitute a living
being. Take for example the case of cardiac pace control (Rezek, 1997). The single
purpose of the cardiovascular system is the transport of chemicals to be infused
into cells across the whole body. If we consider the heart only, its function is the
increase of blood pressure to make it circulate against the resistance of the elastic
tissues. To provide the necessary cardiac robustness the heart can autonomously
control its beating (see Figure 1).

Obviously the autonomy of heart pacing is limited because it must be respon-
sive to pumping needs of other parts of the body —muscles, viscera, etc.— that
are transmitted by different kinds of signals coming from different control levels
— and eventually from the cortex-level mind. Indeed, the core system-integrated
control of heart rate originates in the circulatory centres of the medulla oblongata
and pons —in the brainstem. The control signals reach the heart through sympa-
thetic and parasympatetic nerves to affect many aspects of cardiac operation: force
of cardiac contraction (inotropism), rate of cardiac relaxation (lusitropism), heart
rate (chronotropism) and impulse conduction (dromotropism) (Opie, 2003).

The heart control example help us address the differentiation and merging be-
tween two classes of functions happening in biosystems: core functions and control
functions. In the case of the heart, its core function is pumping —with adequate vol-
ume and pressure— and is performed by cardiac muscle and cardiac valves. The
control function regulates pacing and pressure and it is performed by the sinoa-
trial and atrioventricular nodes, the bundle of His and the Purkinje cells. However,
cardiac muscle is very specialised, being the only type of muscle that is myogenic
—which means that it can naturally contract and relax without receiving electrical
impulses from nerves— i.e. is mostly autonomous, partially incorporating its own
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Figure 1: The heart can control its own beating —its core
function— almost autonomously. The inherent cardiac rhythm
originates at the pacemaker cells of the sinoatrial node to eventu-
ally reach the atrioventricular node and through the bundle of His
and its three branches -right, left anterior, left posterior- reaches
the Purkinje cell network that interacts with myocardic cells. Ob-
viously heart pace can also be controlled by upper control centres
in the brain through sympathetic and parasympatetic nerves to
be able to respond to demands from higher cognition processes.
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control function.

The observation that biological function is performed by a physical core process
with an overlaid control process can be generalised down to the molecular biology
of the cell and up to the psychophysics of the mind. Control is pervasive in biolog-
ical function; using the words of Bayliss (1966) we can say that we are living control
systems. Concrete details of physiological analyses in terms of classical control the-
ory can be found in many places (see for example Khoo (1999)). These analyses also
extend to the application of the same control theory of mental-level traits (Powers,
1973; Carver and Scheier, 1981; Nelson, 1993; Marken, 2002).

This dichotomy (core process vs. control process) being pervasive notwithstand-
ing, we should not forget two facts:

e The control processes are necessarily realised as physical process. Informa-
tion —the very matter of control— does not hold on thin air and needs phys-
ical realisations (Landauer, 1992).

e Sometimes the core process and the control process cannot be clearly sepa-
rated because they are so intermingled in their physical realisation or because
the core process has intrinsic control capabilities; i.e. it is a self regulated pro-
cess (as it is the case of myocardic cells thanks to their myogenic capability).

This dichotomy —core processes vs. control processes— is indeed the dichotomy
of body and mind. Minds are control processes of physical bodies. But, while this
separation can be maximally clear in certain machines that are specifically designed
that way (process/control), this is not so in biological systems because evolution
tends to favour modularisation of function (Klingenberg, 2005) and not of control
and core process; and also because the very phenomenon of life is in itself a phenomenon
of control over complex physicochemical processes (Rosen, 1991). In any case, minds
are informational processes controlling physical processes and realised in them.

From an analytical perspective the mind-body relation is just a relation between
the physical and informational realms. The information extraction frontier is an in-
terface where the physical reality is transformed into an informational reality. In
biosystems this frontier is sometimes not very clear due to the bodily imbrication
of control mechanisms but, in general, it is identified as the sensorial system. The
information realisation frontier is an interface where the informational reality is trans-
formed into a physical reality. Accordingly, this is identified in biosystems with the
motor systeml.

Much discussion has been produced around the notion of information in biological systems and
the extraction vs. creation of information by the agent from the environment. Obviously there is
information —in the Shannon sense— in the environment. Only part of this is accessible to the agent
through its senses and only part is relevant to its dwellings. We agree with the Batesonian view that
what is informative for the agent is “difference that makes a difference”, i.e. information from the
world that is profitable for the agent (Bateson, 1979).
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Figure 2: The physical-informational frontier de-
fines the scope of mind .

In technical systems these frontiers are usually well known and engineered for
clear separability. It is composed by two sections: sensors and actuators. Sensors
map physical into informational. Actuators do the other way, informational into
physical.

In a sense, the existence of this frontier is what defines what a mind is. In the
purest sense of systems analysis (Klir, 1969) this frontier specifies what should be
considered mental and what is considered physical.

Obviously, in pure psychological domains the firings of Purkinje cells —remember
they are muscle cells— are not considered mind at all, but this specification of the
information/physical frontier is much more clear that many more arbitrary sepa-
rations done so far; and is much in line with the separation of what is system and
what is considered environment (see Figure 3).

Additionally, minds are necessarily supported by a physical substrate. The re-
alisation of the informational processes requires the use of physical body parts to
handle informational states. These parts can be playing a role in certain core phys-
iological process or can be fundamentally dedicated to informational tasks. This
last being the clear case of the CNS. But we should never forget that, in general, the
physical coupling of the physical substrate of mind and the rest of bodily processes
is maximal — e.g. the state and competence of our mind totally depends of blood
sugar content in strict connection with liver and pancreas workings.

The need of a physical substrate entails that there are no disembodied minds.
What we can find are minds whose physical substrate is partially independent of
the physical body they are controlling. Some may understand disembodiment in
these terms. In fact this is a basic design objective of control engineers: that the
controller substrate is not affected by the physical events in the plant they are con-
trolling. However there is no possibility of total isolation for two reasons:
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Figure 3: The physical-informational frontier defines the scope of
mind and system. But this scope is arbitrary to the extent that
—uaccording to systems theory— what is the system and what is
the environment is a contingent decision. In the analysis of cog-
nitive systems we use to separate the universe in three arbitrary
parts —environment, body and mind— relating states of one to
states of another. In some cases the concrete physical realisation of
such states is important for the achievement of physical concrete
objectives. In other cases it is not.
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e Isolation is costly. Replacing copper wires by fibre optics to reduce electro-
magnetic interference with control signals costs a lot of money and a trade-off
is mandatory. So control engineers strive just for sufficiently good isolation.
Evolution must have done similarly for biosystems and for the same reasons.

e More importantly, the information frontiers —where the physical becomes
mental— are necessarily physical couplings between the mind physical sub-
strate and the rest of the body. While the previous reason was contingent on
the economy of the system, this reason for no isolation is absolutely necessary.

So, there are no disembodied minds, unless they are isolated from the body, in
which case they are not minds®. “Disembodied mind” is an oxymoron. “Embodied
mind” is a truism.

3 The phenomenon of control

After the general analysis done in the former section we can start characterising
the phenomenon of mind as a phenomenon of control and the proper setting for
this analysis is control systems theory and practice. This is a discipline based on
dynamical systems theory and specifically focused on this dichotomy body-mind
—or plant-controller, as we usually say.

Control theory (Ogata, 1990), as understood in the controls world, is a deeply
mathematical theoretical endeavour. Control engineering is the engineering side of
it where the theoretical results are put into practice in the form of controllers for
machines and processes. But there exists a big gap between theory and practice
—as is the case in all engineering disciplines:

e The theoretical results may be of non-applicability for several reasons among
which we can mention the following: lack of understanding by practition-
ers, excessive constraints for their applicability, lack of plants matching the
theoretical models, efc. .

e There are domains of control technology devoid of theory. This may be due
to a lack of interest of control theorists (e.g. sensor drift problems) of due to a
lack of an adequate formal model (e.g. human supervisory control).

In a sense control theory has been driven by its mathematics reaching a situation
very similar to that of pure mathematics: disconnection from the real world. And,
like most theoretical endeavours, suffers from the “Consider a spherical cow ...”, syn-
drome, producing solutions for yet-to-come problems. On the other side, control
practice suffers from generalised under-education and a lack of rigour in many of

2c.f. the well known brain-in-a-vat mental experiment.
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its activities. This is a purely economical issue, where sufficiently good solutions
are enough.

In control systems analysis and design we use the term “plant” to refer to the
system we are interested in controlling and “environment” to the rest of the uni-
verse (see Figure 4). Obviously, there are interactions between the plant and the
environment that affect both the dynamics of the plant and the dynamics of the en-
vironment. We are not much interested in isolated systems but as degenerate theo-
retical cases of this interaction. We can classify the interaction into three classes:

Outputs: The quantities® coming from the plant we are interested in. They can be
production level in T/h in a cement plant or vehicle speed in a cruise control
system.

Inputs: They are the quantities that we can manipulate to drive the plant to the
operational point we are interest in. In the former examples, they can be the
coal burning rate or the position of the car throttle.

Disturbances: They are material or energetic flows from the environment the we
cannot control but nevertheless affect the plant operation. Examples are the
level of humidity in raw materials or the wind in the road*.

inputs outputs

disturbances

Rest of the world

Figure 4: The system immersed in its environment.

The phenomenon of control is simple to state (see Figure 5):

If the dynamics of the interaction of a plant with its environment is not as
desired —in terms of some observable quantities—, it is in general possible to

3The term quantity is used here in the precise sense proposed by Klir (1969).

4Strictly speaking there are also undesirable flows from the plant to the environment. In the past
they were mostly ignored (if reasonable); now, the widely accepted ecological perspective force control
engineers to consider them as outputs to be controlled.
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complement the system with an additional subsystem —let’s call it a controller—
so that the resultant dynamics of the system plant+environment+controller
renders the desired dynamics at the target quantities.

constraints references
OIS 5, <«

Controller

A

controls controlled outputs

uncontrolled inputs
- >

side effects

disturbances

Figure 5: The controller is an additional subsystem so that the re-
sultant dynamics of the system jplant+environment+controller
renders the desired values at the target output quantities.

The task of devising the proper controller for a given plant and a given set of
objectives is called control design. In case of biosystems the “designer” is evolution,
that is apparently non teleological but if analysed in detail is exactly equivalent
to a teleological mechanism addressing selfish gene objectives (Dawkins, 1976). The
control design problem is an inverse mathematical problem that can be exceedingly
difficult to solve (indeed being insolvable in many cases). The common strategy
to achieve a solution in difficult cases is dual: try to simplify the mathematical
problem doing approximations® and relax the target objectives.

We said that it is possible to complement the plant with a controller “in gen-
eral”, because in some cases the necessary controller will be physically irrealizable
(e.g. would require non-causal behaviour). This comes after the design phase and
it is called controller implementation. Some of the implementational problems are di-
rectly addressed in the design phase (e.g. non-causal controllers are not considered
acceptable designs) but other implementational problems can’t be handled in the
design phase. The principal reason for this is that the construction process cannot
be, in general, formalised enough to be of use in the design process that is deeply
mathematical.

The most common implementational strategy of today is the construction of con-
trollers in software, as sets of interacting programs. So at the end, the resulting
mind controlling the physical body of the plant is a collection of interacting soft-

5The most common simplification is to linearise the models of the plant under control (because
linear problems are easier to solve).
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ware processes —this being a precise term in computer science— running atop some
computer and communications hardware. The discipline of control engineering
has become a discipline of control + computing + communication. The computer
metaphor for the mind is no longer a metaphor (Searle, 1990; Cisek, 1999); it is a
technological asset.

4 Control from body to mind

A particular topic that is very well addressed by control theory is that of linear
feedback control.

A closed-loop feedback controller uses information coming from the actual out-
puts of the plant to determine the proper control actuations over it. Its name comes
from the flow of the information along the system: plant inputs (e.g. throttle) have
an effect on the plant outputs (e.g. car speed), which is measured with sensors and
processed by the controller; the result (the control signal) is used as input to the
plant, closing the action loop (see 6).

Command
signal

N

e(t) Controller

—

Figure 6: A closed-loop feedback controller uses information coming from the
actual outputs of the plant to determine the proper control actuations over it.

In theory, all this complication is unnecessary because if we have a good model
of the plant (i.e. a formal mapping between its inputs and its outputs) the easiest
and perfect control strategy is to invert such model and use it as controller (using
the desired output as reference to the controller):

desired output — PlantModel ' — input — Plant — desired output

However there are two big problems in this strategy: i) it is not easy to obtain a
perfect model of a plant of non-minimal complexity and ii) this model, if obtained,
can be non-invertible. So, in general our controllers are based on plant models that
differ from the real plant; this is the reason for using closed loop controllers.

Closed-loop controllers have many advantages over open-loop controllers, mostly
related to their capability of handling unmodelled dynamics:
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¢ Disturbance rejection, i.e. make the system robust against unmodelled per-
turbations (such as unmeasured friction in a motor).

e Performance even with model discrepancies, when the model structure does
not match perfectly the real plant.

e Unstable processes can be stabilised, i.e. producing a qualitative change in its
dynamics (see Figure 5).

e Robustness against plant drift, having reduced sensitivity to plant parameter
variations.

e Improved reference tracking performance in the presence of noise.

The major drawback it has is that feedback control is, in a sense, necessarily
slower because the controller only reacts when the plant departs from the desired
behaviour (i.e. after the things went wrong). Alternative structures —like feedfor-
ward control— are employed to compensate for these drawbacks and not going
behind the plant.

4.1 PID controllers

The most common control strategy uses a simple linear feedback to compensate
errors, speed of change and accumulated error. It is named PID controller —
Proportional-Integral-Derivative— referring to the three terms operating on the
error signal to produce a control signal (Astrom and Hagglund, 1995). A PID con-
troller has the general form shown in Figure 7 where u(t) is the control signal sent
to the plant by the controller and e(t) is the tracking error e(t) = r(t) — y(t) (where
y(t) is the measured output and r(t) is the desired output or reference). K,, Ky, K;,
T; and T; are the adjustment parameters of the controller.

u(t) = Kp - e(t) + KdedZ(tt) + % /e(t) - dt

Figure 7: The PDI controller is the most common control strat-
eqy, computing the control signal u(t) from three terms on the
tracking error e(t) = r(t) — y(t).

4.2 Mode switching controllers

In general the control capability of a PID controller is sufficiently good to achieve
good transitory and steady regime responses. In some cases, however, the simple
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linear response of the controller (see Figure 7) does not achieve the desired results
and alternative strategies must be used. Worst enough, the different strategies will
work adequately only in partial regions of the plant state space, hence being no sin-
gle better alternative to use. In this cases a technique in common use is called mode
switching control, where the control system employs one single strategy among
several making the choice in terms of the present operational condition of the plant
(see Figure 8)

Disturbance

Setpoint Output

—>
+

Fuzzy

e

Figure 8: Mode switching controllers (MSC) select the best strategy to use
—among a set of predefined ones— for the current situation of the plant. The
strategies in this case are i) a PID controller, ii) a bang-bang controller, iii) a
model reference adaptive controller (MRAC), iv) a fuzzy controller and v) an
optimal controller. References about them can be easily found in the control
systems literature (Levine, 1996).

Figure 8 shows a simple structure for mode switching control. The main differ-
ence from the basic feedback controller of Figure 5 is the existence of a battery of
alternative control strategies:

e a PID controller, using the strategy described before;

e a bang-bang controller, that provides increased responsiveness sacrificing pre-
cision (this is used, for example, in achieving minimum time in subway trains
somewhat sacrificing passenger comfort);

o a model reference adaptive controller (MRAC), that will be described later in sec-
tion 4.4;

e a fuzzy controller, that exploits control rules expressed in linguistic terms; and

e an optimal controller, that being deeply model-based, tries to maximise certain
relevant functional.
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However, in the normal use of this control structure, the different controllers
employed only differ in their parameterisation and not in their strategy. References
about them can be easily found in the control systems literature but a good, all-
encompassing text, is that of Levine (1996).

4.3 Model-predictive control

In our former discussion of feedback control we said that the main problem of this
strategy is that it is always behind the plant, not being able to achieve the desired
output values but in response to extant errors.

This is a big problem in certain kinds of systems, where reaching the desired
output values in a concrete instant of time is of maximal importance. Think for
example of hitting a tennis ball with a racket. The racket must be in the exact po-
sition in the precise instant the ball is passing there. Error feedback control cannot
achieve this. The only possibility is having some form of anticipation.

Model-predictive control is a strategy based on predicting the future trajectory
of a system based on a model of it, and using this anticipatory capability to deter-
mine, at present time, the control action necessary for taking the system to a certain
state in a precise future instant.

Plant
Model

— s

Predictive
Controller +

\ﬂF—‘

l Disturbance

Reference

1 Output
—> >

Feedback

Controller Ak

Figure 9: Model-predictive control is a strategy based on predicting the future
trajectory of a system based on a model of it, and using this anticipatory capa-
bility to determine, at present time, the control action necessary for taking the
system to a certain state in a precise future instant.

The realisation of the model predictive controller is usually done in the form
of a two-level layered control. The outer layer —the MPC controller itself— uses
the plant models and the current plant output measurements to calculate future
trajectories of the manipulated variables that will result in operation that fulfils all
constraints. The MPC layer then sends this set of manipulated variable changes to
the inner layer regulatory controller as setpoints to be pursued in the process.
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4.4 Model-reference adaptive control

Adaptive control systems are reflective controllers able to modify its control law
to cope with the fact that the parameters of the plant are uncertain or are drift-
ing from the initial conditions. For example, as an spacecraft flies, its mass will
continuously decrease as a result of fuel consumption, and the control law must
change accordingly. Another example are production processes so harsh —e.g. ce-
ment manufacturing— that some sensors are continuously changing its measuring
capability in a process of continuous grinding.

Reference Reference model output

Model Ym (t)
Y
Control Adaptat_ion »
parameters > Mechanism
“—
Process
Command \ output
signal Control
2 signal y(t)
Controller > Plant >
) L—\/)

Figure 10: The model-based adaptive controller (MRAC) uses a model of the
plant to determine the extent of deviation from the controller design conditions.
This deviation is then used to re-tune the controller.

Figure 10 shows the architecture of a model-based adaptive controller. This con-
troller has a control law that is used to control the plant and at the same time uses
a model of the plant to determine to what extent the real plant is departing from
what was thought. The behavioural differences between the real and the expected
are then used by the adaptation mechanism to re-tune the control law parameters
to increase it adequacy to the real plant.

4.5 Hierarchical Control

A real plant can be very simple or can be extremely complex. Room thermostats —a
favourite in philosophy of mind— are bang-bang controllers of extreme simplicity
that are controlling a single magnitude in the plant: room temperature. A real tem-
perature control in a chemical industrial reactor can imply tens of sensors, actuators
and heterogeneous nested control loops to achieve the desired performance.

A real industrial plant can have thousands of magnitudes under control and the
organisation of all these control loops is a major control system design challenge.
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This is so because not only the different magnitudes must be under control but that
they must be so in a co-ordinated way so as to achieve the global objectives of plant
operation.

The strategy to do this is to organise the control loops in a hierarchy where low
level references for controllers are computed by upper-layer controllers that try to
achieve more abstract and general setpoints. For example, in a reaction unit of a
chemical plant many low level controllers control individual temperatures, pres-
sures, flows, efc. to fulfil the higher level control objectives of the unit like produc-
tion and quality levels.

—

Strategic control
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——————
Process control

N
~
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Local control
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~

—
Sensors & Actuators
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Figure 11: A hierarchical distributed control system (DCS) of an industrial plant is struc-
tured in many different control layers. Control objectives gain in abstraction level when
going upwards. Temporal criticality and precision grow when going downwards toward
the plant.

What is most interesting in studying the phenomenon of control in biological
systems and large-scale process plant controllers are the striking similarities be-
tween both. While robot control systems in many cases try to mimic biosystems
exploiting what is known —or hypothesised— about their control systems, in the
case of process plants, the bioinspired movement is yet to come (except possibly at
the levels of expert process control (Astrom et al., 1986)).

Industrial control systems technology has developed following its own evolu-
tionary path from the early analogical controllers of mid twentieth century to the
fully computerised, zillion lines-of-code of today’s whole plant controllers. Differ-
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ent ways of organisation have appeared in the structuring of the core processes, in
the structuring of control architectures and, quite recently, in the co-structuring of
process and control.

From the perspective of the control system we observe an evolution that some-
what parallels the development of mental capabilities in biosystems:

1. The most simple control mechanism is a purely reactive mechanism that trig-
gers some activity when some conditions are met. Examples of these are a
big part of all protection and safety mechanisms in industrial systems. The
overall behaviour is similar to multitude of safety reflexes in biosystems.

2. An additional level of complexity is achieved when the raw sensorial infor-
mation is minimally processed to extract meaningful information for the ap-
plication of behaviour triggering. This is done in elementary control and pro-
tection systems. In the case of biological systems, a well known study in this
field is the work of Lettwin et al. (1959) about retinal processing in the frog
eye®.

3. The next layer appears when it is possible to conceptualise the operation of
the controller and inject on it concrete parametric values (e.g. setpoints or
controller parameters). This layer is hence integrable with upper level con-
trols opening the possibility of a control hierarchy. It is also well known in
biosystems that some motor actions coming from upstream the CNS are exe-
cuted by low level controllers (core examples are homeostatic control systems
of the body (Cannon, 1932)).

4. Using the conceptual openness of the control loop it is hence possible to layer
control loop over control loop —this is called control loop nesting— so that
upper level behaviour relies in the robust performance of lower level be-
haviour —thanks to the integrated controller. In this way it is possible to
use a production quality control in a chemical reactor having underneath
a plethora of lower level controllers keeping flows, pressures and tempera-
tures at a suitable level. Following the homeostatic example of the previous
case, we can discover that large systemic processes —e.g. digestion— relay
on lower level processes keeping bodily magnitudes apace. Another interest-
ing example is how the process of gait control relies on lower level muscular
control (Grillner, 1985).

5. An interesting step forward happens when engineers reach the conclusion
that it is possible in general to separate controllers into two parts: an universal

®Let’s quote this work: “The output from the retina of the frog is a set of four distributed operations of the
visual image. These operations are independent of the level of general illumination and express the image in
terms of 1) local sharp edges and contrast, 2) the curvature of edge of a dark object, 3) the movement of edges,
and 4) the local dimmings produced by movement or rapid general darkening. [...] Could one better describe
a system for detecting an accesible bug? ” (Lettwin et al., 1959).
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engine and some data that specifies the concrete control strategy to follow.
This opens new possibilities for reuse of engines. A clear example of this are
the MPC controllers mentioned in section 4.3 and the controllers based on
expert systems technology (Sanz et al., 1991).

6. The next and most interesting step in the development of complex control
systems is the realisation that a conceptualisation of this separability engine
+ knowledge renders a new level of controller openness to metacognitive pro-
cesses (Meystel and Sanz, 2002). In the case of the human control system this
gives rise to introspection capabilities and the the well known phenomenon
of memetics and culture (Blackmore, 1999).

What is most interesting of this parallelism between technical industrial control
systems and biological controllers is that they have happened in almost complete
isolation. For sure, the evolution of technical controllers has not effected substan-
tially the evolution of control mechanisms in biosystems. But the opposite is also
true —with the possible exception of knowledge-based control where human ex-
pertise was injected into the technical system.

This could be interpreted in the sense that evolutionary pressure on control/cognition
points into the direction of layered metacognitive controllers; i.e. it points into the
direction of consciosness (Sanz et al., 2002). To properly understand this phe-
nomenon let’s deepen a bit the analysis of the model-based nature of the control
capability.

5 Model-based cognition

As we have seen, models of the plant are critical assets in the construction of control
systems. They are used to capture plant dynamics and serve as base information
for the control design process. They indeed are explicitly used in some control
schemata (e.g. model predictive control).

So, controller quality depends heavily on our capability to adequately model the
plant to be controlled. But modelling is not only essential as a supporting activity
for humans performing a control system design process’. Plant models end —in
one form or another— as parts of the controller. A controller is as good as is its
capability to exploit internalised models of the system it is controlling (Conant and
Ashby, 1970). Let’s repeat this because it is so important:

A controller is as good as is its capability to exploit internalised models of
the plant it is controlling.

7 A plant model —e.g. written on paper— can be considered an externalisation in the line of the
extended mind concept (Clark and Chalmers, 1998).
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At the end of the day, no matter what is the controller architecture and the design
process, plant models become an integral part of effective controllers. Even the
simplest controllers (e.g. the PID) do have parameters that indeed capture the plant
dynamics (the K;, Ky, K;, T; and T; of Figure 7).

This affirmation is so important for cognitive science because we will later equate
models with knowledge providing a formal grounding for an epistemological analysis
of cognition-in-the-world. We must stress the fact that we are moving the problem
of knowledge from a cloudy phylosophical context (Gettier, 1963) into the more
precise and technable waters of modeling (Bernard P. Zeigler, 2000).

5.1 Structure of a model-based cognitive agent

This model-based control approach is very much in line with current trends in cog-
nitive science that claim for the understanding of mind in terms of internalised
models. This started with Craik (1943) in the forties but gained in audience with
the works of Johnson-Laird, Gentner and followers (Johnson-Laird, 1983; Gentner
and Stevens, 1983) but still has to be accepted as more than just a metaphor. Minds
are model-based systems. According to the theoretical, system-level analysis of
Conant and Ashby (1970), there is an evolutionary pressure to develop such a kind
of architecture of cognition, and cognitive science will, sooner or later, necessarily
take the model-based approach as a core disciplinary doctrine.

Figure 12 shows a basic structure for a generalised model based controlled sys-
tem that can both i) generate its own plant models and ii) accept external injection
of explicit knowledge. In the interaction with the plant, the pair action/modeller
perform both a change of plant state and a change on the controller itself. The agent
—let’s use this name for the system— is able to create mental representations of the
world it is interacting with and that includes both the plant and the world affecting
it —its environment.

This kind of agent presents a maximal degree of cognitive autonomy but how-
ever cannot escape the constraints imposed by the very realisation of its core pro-
cesses Action and Modeller.

Much has been said about processes of mental representation and cognitive dy-
namics. The model-based control approach to cognition offers, however, a consoli-
dated perspective of the multiple aspects regarding situated, embodied cognition:

The relevance of the body: In section 2 we reached the conclusion that we can’t
ignore the body as it provides the physical processes that sustain the infor-
mational processes of the mind. But beyond that obvious fact, the solution of
the control problem in the context of autonomous systems requires an explicit
consideration of body dynamics in relation with world dynamics. Realise that
this is not an physicalist argument but a pure mental argument: the solution
of the informational problem requires expressin in bodily terms.
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Figure 12: In generalised model-based control, the
controller itself is able to generate the world mod-
els —a superset of the plant model— to be used in
the performance of the control actions. To increase
generality the controller employs a source of explicit
control knowledge about the control strategy to fol-
low.

The relevance of the task: The age old debate around the possibility of general
intelligence somewhat dissipates in this context of model-based control. In
Sanz et al. (2000) we analise the problem of autonomy in terms of three cou-
pled entities: task, body and world. Solving the control problem requires a
maximal precisation of the task; general statements like achieving human-level
problem solving not only are imprecise but totally misleading because there is
no such thing as human-level competence except at basic pre-cultural, almost
strictly biological capabilities of human bodies. Research on human-level
cognitive competences has not properly addressed the question of systemic
substrates for the provision of such competences —with some honorable ex-
ceptions (Sloman and Chrisley, 2003).

The relevance of the situation: In the very same sense, the dynamics of the reality
surrounding the agent must be captured in the mind of the agent. However
the necessary deepness of the representation of both agent and environment
will be directly dependent on the nature of the control problem to solve and
the concrete control strategies followed by the agent. Using robust control
schemata (Chen, 2000) the agent will be able to perform sufficiently good
without deep representations if body and environment do stay inside some
boundary conditions. This is an effective and economic strategy based on
maximally simple models (i.e. just sets of boundary conditions).
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The relevance of epigenesis: The exact amount of epigenesis (Ziemke, 2002) nec-
essary for the agent will depend on many factors: i) the concrete control prob-
lem; ii) The amount of a priori instantiated knowledge that the agent has in its
components; and iii) the level of change in body and environment dynamics
that the agent must embrace. So, epigenesis is certainly on the side of adap-
tation but nevertheless raising a complex mental structure from scratch may
take aeons. Bootstrapping will be easier if starting from cognitive engines that
are both general and robust. See for example the work of Beer (2003) where
a dynamical analysis of a minimal cognitive agent is presented. The agent is
implemented by means of a continuous time recurrent neural network that is
adaptively configured.

_— e

References
e

Figure 13: Body-Mind again in a double interaction cycle.

5.2 Operation of a model-based cognitive agent

The global operation of a cognitive system (see Figure 13) is a concurrent activity
of two major processes: the process called action that maps from the mental to the
physical and the process called perception that maps from the physical to the mental.
The sense-think-act classical paradigm of cognition maps into a cycle sense-think-
act-behave —much in line with embodied and dynamical systems approaches—
that realises the core cognitive pattern (Figure 14).
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Figure 14: The cognitive pattern.

The operation of a cognitive agent realising the model-based control architecture
is very straightforward. In summary:

e The agent extracts relevant information from what Kuipers (2005) describes
as the firehose of experience. Bear in mind that input happens in two stages,
sensing and perception (Lépez, 2007); the first is constrained by sensor capabil-
ities and the second is limited to what is perceivable in terms of perceptual
categories — i.e. potential matches in the mental models.

e The different model-integrated percepts change the dynamic equilibrium of
mind substrates, settling the operational modes of the agent (Freeman, 2000).
This will trigger concurrent mental action dynamics that may produce exter-
nalized dynamics —motor outputs— and internalized dynamics —thought.

e The core basic internal dynamical process is the process of mental model con-
struction and maintenance. This happens upon detection of mismatches be-
tween perceptual flow and model flow —the product of model execution.
The models are based on intrinsic biological capabilities —e.g. our genetically
implanted model of a human face—, experientially built models —a system
identification process (Ljung, 1998)— and culturally transmitted —memetics
Aunger (2000).

Notice that we sometimes use modelling instead of perception to stress the active
modelling aspect sublying the perceptual process. In a more detailed architectural
analysis these two aspects do have a clear separation of function: perception is ex-
ternal information injection into models and exploits the functionality of the mod-
eller —a model carer.

The approach depicted in figure 12 is maximally general and this implies that in
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many cases we will find just degenerate versions of it. The most common degener-
ations are:

1. the collapse of the control knowledge representation and the action genera-
tion mechanisms into a single unit (faster, cheaper but less flexible);

2. the elimination of dynamicism in model construction rendering a somewhat
classical feedback controller; and

3. the collapse of mental and bodily subsystems in self-regulated processes (c.f.
section 2).

What is missing to complete the “thinking bodies” picture is the fact that cog-
nitive processes happen at all scales in a complex controlled system. Integration
—the key to system level cognition and consciousness— will be devoid of a spe-
cific section.

6 Integration is key

Remember that we started this chapter analysing the control capabilities that bodily
systems have at different levels. In the case of the heart we saw that these capabil-
ities range from the intrinsic self-organising control capability of myogenic cells to
upper brain control.

The structuring of all these control processes is driven by several heterogeneous
forces:

e The first one claims for simplicity that provides robustness and evolvability.

e The second calls for non-interference that enables concurrence and modular
evolution of the bodily subsystems.

o At the organism-level efficient behaviour requires that all these separate con-
trol loops must be co-ordinated.

e Economic reasons dictate that many of the functions provided by bodily or-
gans are shared across different subsystems

Integration is the key issue for system-level behaviour (Rossak and Ng, 1991;
Grillner et al., 2005). At the end all these forces result in an antithetical decomposi-
tion/integration organisation process that renders a unified organism or system.

The concept of system-level integrated functionality is germane to the very con-
cept of biological organism. The idea that different parts of organisms are co-
ordinated to form a functional whole was initially stated by Cuvier as the “principle
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of correlation” (Cuvier, 1813) and currently it has the denomination of morpholog-
ical integration (Everett C. Olson, 1999):

“This is because the number, direction, and shape of the bones that compose
each part of an animal’s body are always in a necessary relation to all the other
parts, in such a way that - up to a point - one can infer the whole from any one
of them and vice versa”.(Cuvier, 1813)

In computer-based systems the issue of integration has been considered just a
matter of proper interfacing in a primary level. However, when addressing issues
of large-scale, enterprise-level systems, it is clear that sound integration calls not
only for adequate integration mechanisms but also for a unified integration architec-
ture (Rossak and Ng, 1991).

The search for such a kind of unified perspective on integrated control architec-
ture in natural systems confronts the pervasive intricateness of biological function
and control. However, some interesting works in theoretical biology can be found
(Rosen, 1985).

In the case of complex technical control systems (see Figure 15), Sanz (1990)
presented an initial layered approach that was refined and extended in following
works by Alarcén et al. (1994) and Sanz et al. (1999). We must stress, however,
that from a model-based perspective of cognition, integration means control model
federation across scales of the control hierarchy®. This is an open research issue
that is beginning to receive adequate attention (Samad, 1998).

7 Conclusions

Just to conclude this chapter let’s summarise its main content in the form of a series
of propositions:

e The mind/body relation is an informational /physical relation between a con-
troller and the plant it is controlling.
e The mind —the controller— has a necessarily physical implementation.

e Cognition is the closed dynamical process of sense-think-act-behave. It is a
systemic —emergent— phenomenon.

e Cognitive behaviour is based on the exploitation of mental models of plant
and environment in the determination of actions.

8The very term cognitive integration is also used with other integrational meanings, e.g. in relation
with externalism (Menary, 2007).
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Figure 15: The integration landscape in a whole-plant integrated hierarchical control sys-
tem. The lower layers provide homeostasis and fast responses to local goal settings. The
upper layers implement highly cognitive multi-goal strategic control (including human-in-
the-loop integration).
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¢ Sensing is mapping physical states into informational states.

e Actuating is mapping informational states into physical states.

e Perception is model-integration of sensed information.

e Knowledge is executable dynamic models.

e Learning is model creation and caring.

e Cognitive loops organise in heterarchical /hierarchical integrated concurrent

systems.

Figure 16 presents a summary depiction of the core fundamental cognitive or-
ganisation as derived from the ideas exposed so far. This elementary organisation
provides the core cognitive structuring that has to be implemented hierarchically
and concurrently in each of the layers of the integrated hierarchy to achieve high-
level cognitive capabilities.

Goal setting

v

Sensing Modeling |<—> Controlling |[<—> Acting

Thinking

body A/

world

Figure 16: The core epistemic control loop provides the minimal structure for the provision
of robust, model-based cognitive capabilities as described in this chapter. This is the minimal
building block for general cognitive capabilities.
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Cognitive loop integration will render, at the end, a single unified cognitive ar-
chitecture that can reach, if properly provided with the necessary reflexive self-
sensing and self-modelling, any level of cognitive capacity —including self-consciousness
(Sanz et al., 2007).
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